Assesment of Skin Color Changes in Pineapple MD2 Using CIE L*a*b* Color Space

Authors

  • Nurhazimah Md Hasmartuah Universiti Malaysia perlis
  • Rashidah Ruslan UNIVERSITI MALAYSIA PERLIS (UniMAP)
  • Aimi Athirah Aznan Universiti Malaysia perlis

DOI:

https://doi.org/10.36877/aafrj.a0000564

Abstract

Abstract: Pineapples serve as an excellent source of essential vitamins and minerals, and their consumption is predominantly in the fresh state due to the fruit’s appealing taste. Harvesting pineapples based on skin color provides valuable insights into the ripening stages of the fruit. Therefore, this study aims to assess the pineapple skin color changes non-destructively using CIE L* a* and b* color coordinates to identify significant changes on the ripening index color. A total of thirty-five MD2 pineapples were harvested, and their skin color changes were evaluated using a colorimeter (Minolta Chromameter, Model CR400). The analysis involved a one-way ANOVA, which revealed a significant difference in color parameters across ripening indices. Furthermore, Tukey’s Test HSD (p < 0.005) highlighted a substantial shift in colors, particularly in the a* (greenness) and b* (yellowness) values, from index 1 to index 7. This study aid in the process of developing non-destructive technology for grading and quality inspection of MD2 pineapple.

Keywords: Non-destructive; Pineapple; RGB; Maturity Index 

References

Arboleda, E. R., de Jesus, C. L. T., Tia, L. M. S. (2021). Pineapple maturity classifier using image processing and fuzzy logic. IAES International Journal of Artificial Intelligence, 10(4), 830–838. https://doi.org/10.11591/ijai.v10.i4.pp830-838

Dittakan, K., Theera-Ampornpunt, N., & Boodliam, P. (2018). Non-destructive grading of Pattavia Pineapple using texture analysis. 2018 21st International Symposium on Wireless Personal Multimedia Communications (WPMC). https://doi.org/10.1109/wpmc.2018.8713088

Hasan, M. A., Sarno, R., Sabilla, S. I. (2020). Optimizing machine learning parameters for classifying the sweetness of pineapple aroma using electronic nose. International Journal of Intelligent Engineering and Systems, 13(5), 122–132. https://doi.org/10.22266/ijies2020.1031.12

Kaur, M., & Sharma, R. (n.d.). Quality Detection of Fruits by Using ANN Technique. IOSR Journal of Electronics and Communication Engineering, 10(4), 35–41. https://doi.org/10.9790/2834-10423541

Lapcharoensuk, R., Aimwongsa, T., Kaeynok, A., et al. (2017). Color values models for determination of citric acid in pineapple. https://www.researchgate.net/publication/335518096

Lasekan, O., & Hussein, F. K. (2018). Classification of different pineapple varieties grown in Malaysia based on volatile fingerprinting and sensory analysis. Chemistry Central Journal, 12(1). https://doi.org/10.1186/s13065-018-0505-3

Mohammad, S., Ghazali, K. H., Zan, N. C., et al. (2012). Classification of fresh N36 pineapple crop using image processing technique. Advanced Materials Research, 418–420(November 2015), 1739–1743. https://doi.org/10.4028/www.scientific.net/AMR.418-420.1739

Mohd Ali, M., Hashim, N., Abd Aziz, S., et al. (2020). Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Research International, 137. Elsevier Ltd. https://doi.org/10.1016/j.foodres.2020.109675

Mohd Ali, M., Hashim, N., Abd Aziz, S., et al. (2022). Characterisation of pineapple cultivars under different storage conditions using infrared thermal imaging coupled with machine learning algorithms. Agriculture (Switzerland), 12(7). https://doi.org/10.3390/agriculture12071013

Mohd Ali, M., Hashim, N., Bejo, S. K., et al. (2023). Innovative non-destructive technologies for quality monitoring of pineapples: Recent advances and applications. Trends in Food Science and Technology, 133, 176–188. Elsevier Ltd. https://doi.org/10.1016/j.tifs.2023.02.005

Thalip, A. A., Tong, P. S., & Ng, C. (2015). The MD2 ‘super sweet’pineapple (Ananas comosus). UTAR Agriculture Science Journal (UASJ), 1(4).

Qiu, G., Lu, H., Wang, X., et al. (2023). Nondestructive detecting maturity of pineapples based on visible and near-infrared transmittance spectroscopy coupled with machine learning methodologies. Horticulturae, 9(8). https://doi.org/10.3390/horticulturae9080889

Siti Rashima, R., Maizura, M., Wan Nur Hafzan, W. M., et al. (2019). Physicochemical properties and sensory acceptability of pineapples of different varieties and stages of maturity. Food Research, 3(5), 491–500. https://doi.org/10.26656/fr.2017.3(5).060

Ullah, H., Chaiwong, S., Saengrayap, R. (2018). Application of image analysis for maturity classification of “Phulae” Pineapple. The International Conference on Food and Applied Bioscience 2018 proceeding book. https://www.researchgate.net/publication/335754674

Xu, S., Ren, J., Lu, H., et al. (2022). Nondestructive detection and grading of flesh translucency in pineapples with visible and near-infrared spectroscopy. Postharvest Biology and Technology, 192. https://doi.org/10.1016/j.postharvbio.2022.112029

Downloads

Published

2025-07-02

How to Cite

Md Hasmartuah, N., Ruslan, R., & Aznan, A. A. (2025). Assesment of Skin Color Changes in Pineapple MD2 Using CIE L*a*b* Color Space. Advances in Agricultural and Food Research Journal, 6(2). https://doi.org/10.36877/aafrj.a0000564

Issue

Section

ORIGINAL RESEARCH ARTICLE
Abstract viewed = 21 times
PDF downloaded = 15 times