Predictive Modelling for Rice Weeds in Climate Change: A Review
DOI:
https://doi.org/10.36877/aafrj.a0000317Abstract
Rice (Oryza sativa L.) is an important staple food not only for Asians but also for people worldwide. However, weeds in rice fields can cause yield reduction due to their tendency to compete for resources. These significant biological obstacles can potentially cause complete yield loss if inappropriately managed. In addition, future climate change can cause rice weeds to become more competitive against cultivated rice plants by providing new favourable conditions for the unwanted species to expand aggressively. As the effect of climate change on rice weeds has been studied, the abiotic parameters, including carbon dioxide concentration, atmospheric temperature, drought, and soil salinity, can be used to construct predictive modelling to forecast rice weed infestation. If the weed invasion in rice fields can be predicted accurately based on the weather information, the farmers can prepare the countermeasure early to avoid high yield loss. However, some challenges need to be faced by the researchers as the weed invasion depends not only on the climate condition alone. This review summarizes the effect of climatic variation on weed infestation in rice fields. It also discusses how predictive modelling can be developed based on the information of the environmental conditions and their challenges.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhamd Noor Hazwan Abd Manaf, Abdul Shukor Juraimi, Nik Norasma Che'Ya, Ahmad Suhaizi Mat Su, Muhammad Huzaifah Mohd Roslim, Anuar Ahmad, Nisfariza Mohd Noor
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This broad license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
The author(s) permits HH Publisher to publish this article that has not been submitted elsewhere.