Detection and Classification of Basal Stem Rot Disease in Oil Palm Using Machine Learning Techniques: A Mini Review
DOI:
https://doi.org/10.36877/aafrj.a0000365Abstract
The oil palm grown around the world to meet the demand for food and bio-fuels, is threatened by a fatal disease known as basal stem rot (BSR). Application of machine learning (ML) in agriculture keeps increasing with the advancement of technology, especially in disease detection. This manuscript presents a mini-review of the different methods relevant to BSR disease classification and detection using ML. The steps were discussed, including pre-processing and approaches used. Various algorithms, feature extractions and classification methods were discussed in the review. The review results revealed that the adoption of disease detection and classification methods for BSR disease in oil palm using ML approaches is still in its early stages of research. Hence, new tools are needed to fully automate the detection and classification processes for practical, operational, fast and accurate systems to be used in vast oil palm plantations.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nur Azuan Husin, Mohd Hamim Abd Aziz, Siti Khairunniza-Bejo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher right for the first publication with the work simultaneously licensed under:
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). This license allows for the copying, distribution and transmission of the work, provided the correct attribution of the original creator is stated. Adaptation and remixing are also permitted.
This broad license intends to facilitate free access to, as well as the unrestricted reuse of, original works of all types for non-commercial purposes.
The author(s) permits HH Publisher to publish this article that has not been submitted elsewhere.