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Abstract: Exopolysaccharides, known as bacterial EPS, are complex sugar polymers that 

bacteria secrete into their environment. EPSs play a crucial role in bacterial survival and 

proliferation by protecting cells from environmental threats. They also contribute to proper 

adhesion to numerous surfaces through biofilm production. Bacterial EPS display a wide 

range of biological activities conferred by their outstanding physical and chemical properties, 

which make them great candidates for medical and industrial applications. The main 

biological activities recorded up-to-day include antioxidant, anticancer, antiviral, anti-

inflammatory, anticancer, antibacterial, immune-modulatory and chelating properties. They 

also can be used as thickening agents in the industry or as additives to improve soil quality 

in agriculture. The current review offers a thorough overview of bacterial EPS, their 



PMMB 2023, 6, 1; a0000384 2 of 82 

 

biosynthesis processes and regulation, and biotechnological strategies to increase their 

production. The review also unravels the main extraction, purification, and identification 

techniques and highlights the key functional features of these complex molecules.  

Keywords: Exopolysaccharides; bacterial; bioactivities; production; applications. 

 

1. Introduction 

Natural products from different organisms, including microorganisms, have several 

biological, biochemical, and pharmacological properties[1–4]. These molecules include 

numerous macromolecules such as sucrose, lipids, proteins, flavonoids, alkaloids, and 

phenolic acids, exhibiting various bioactivities such as antioxidant, antimicrobial[5–11] and 

anticancer activities[12,13]. 

Polysaccharides or glycans are complex carbohydrates found in various organisms, 

including plants, animals, bacteria, fungi, and algae. These compounds play an essential role 

in biological systems and exhibit diverse chemical structures and physical properties[14,15]. 

Bacterial exopolysaccharides (EPS) are indeed a diverse group of polysaccharides 

biopolymers produced by various bacterial species. EPSs are high molecular weight 

biopolymers ranging from 10 to 1000 kDa[16] with repeating units of azures at different 

proportions outside of the cell and have a protracted lifespan[17,18]. EPSs can be present in 

two different forms. They can either be excreted into the surrounding environment or remain 

bound to the cell surface. Extremophiles, thermophiles, halophiles, psychrophiles, 

acidophiles, and alkaliphiles are only a few of the bacterial types that can develop 

exopolysaccharides (EPS)[19].   

EPS are classified into two major groups: homopolysaccharides and 

heteropolysaccharides. Homopolysaccharides consist of repeating units of a single type of 

monosaccharide, such as levan, produced by Streptococcus salivarius, glucan, which is 

synthesized by Streptococcus mutans and Streptococcus sobrinus, while dextran, produced 

by Leuconostoc mesenteroides. Heteropolysaccharides are composed of repeating units of 

various monosaccharides. They are widely produced by microorganisms that are relevant to 

medicine, including lactic acid bacteria, Salmonella spp., Escherichia coli, and Enterobacter 

spp.[20]. 

EPSs are key components in biofilm architecture. This latter is composed of different 

biopolymers, such as polysaccharides, lipids, nucleic acids and proteins, which confer 

mechanical strength and adhesion properties to the biofilm matrix[21–25]. EPSs help to regulate 
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the microenvironment within the biofilm by trapping nutrients and metabolites, protecting 

the biofilm from environmental stress, and facilitating intercellular communication between 

bacterial cells[26]. This communication can lead to the establishment of complex signaling 

networks, which in turn can regulate the growth, differentiation, and dispersal of the biofilm 

community[27–30]. Overall, EPSs play a vital role in biofilm architecture by providing an 

essential physical framework for microbial attachment, growth, and safeguarding from 

harmful environmental elements, and ensuring nutrition and survival. 

Bacterial EPSs have gained significant attention among researchers in recent years[31–

33]. They play important roles in numerous biological processes, including biofilm formation, 

cell-cell communication, and protection against environmental stress, which offer 

tremendous opportunities for applications in food, medicine, and even pharmaceuticals[34,35]. 

Given the outstanding potential of EPS in different applications listed above, the 

present review aims to provide a concise overview of (i) EPS biosynthesis pathways and 

regulation, (ii) biotechnological approaches to improve their production in bacteria, (iii) the 

different extraction methods applicable, (iv) the main functional properties and (v) the 

different applications described up-to-date (Figure 1). 

 

 

Figure 1. General overview of bacterial exopolysaccharides, optimization of production, extraction methods, 

function properties and applications. 
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2. Processes for exopolysaccharides synthesis 

2.1. EPS Biosynthesis and Regulation 

Bacterial EPS biosynthesis is a complex process that depends on many genes involved 

in polysaccharide biosynthesis, export, and modification. EPS biosynthesis has been 

intensively studied in several bacterial strains, as underlined by Kim et al.[36], Li et al.[37], Xie 

et al.[38] and Yang et al.[39]. A complex process that controls bacterial EPS biosynthesis allows 

bacteria to manufacture EPS in response to certain environmental constraints. EPS synthesis 

pathways can be classified into two categories: phosphorus-dependent and phosphorus-

independent pathways[40,41]. 

The first one includes the alginate-type pathway as in Pseudomonas aeruginosa and 

the Colan-type pathway as in E. coli. Phosphorus-independent pathway of EPS synthesis 

including the cellulose-type pathway as in Gluconatobacter xylinus, as well as curdlan, 

xanthan and levan-type pathways in various bacterial species[42–44]. Genes in the EPS gene 

cluster frequently encode the enzymes necessary for this production. EPS production can be 

regulated at transcriptional, post-transcriptional, and secretion levels. A complex system that 

usually involves numerous signaling and gene regulatory networks regulates the production 

of bacterial EPS. One of the most common regulatory mechanisms for EPS production is the 

two-component regulatory mechanism. This regulatory system activates or represses the 

transcription of genes involved in the generation of EPS by receiving signals from the sensor, 

which detects environmental constraints such as nutrient deprivation, stress levels, and 

surface signals[22,35]. Transcriptional and post-transcriptional regulatory network of genes 

involved in exopolysaccharides synthesis and secretion is composed of the regulatory genes 

cbrA, and mucR, as well as the genes involved in ExpR / Sin Quorum sensing type ExoR / 

ExoS / ChvI systems. ExoR is an environmental signal receptor that controls the genes 

responsible for EPS synthesis. ExoS is an exported protein that controls ExoR's 

phosphorylation, whereas Chyl is a regulatory protein that interacts with ExoR and ExoS to 

facilitate their function. These regulators control the biosynthesis, segregation, and synthesis 

of type I and type II exopolysaccharides, as well as flagella synthesis, mobility, and also 

regulate genes involved in symbiotic signaling pathways[40,41]. 

In E. meliloti and E. aridi LMR001T, the MucR protein, which is controlled by the 

exopolysaccharide production regulatory system, has been demonstrated to be involved in 

the motility control network and flagellum biosynthesis[45,46]. It was also established that the 

gene regulator nesR, which encodes for the NesR and is an inductor of the ExpR family of 

type LuxR operon, regulates the genes involved in the production of the symbiotic 
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exopolysaccharide EPS II, the regulation of motility, chemotaxis, and production of low-

molecular-weight succinoglycans. This latter represents another form of exopolysaccharide 

with significant symbiotic relevance[46–51]. It's noteworthy to mention that the control of 

motility occurs after the activity of ExpR regulator, which regulates two LuxR-like proteins 

called VisN and VisR[50,52,53]. Despite the fact that both proteins are regarded as LuxR family 

members, their autoinducer binding domains differ significantly from those of conventional 

LuxR proteins[52]. The VisN/VisR system increases the transcription of flagellar synthesis, 

flagellar motor, and chemotaxis genes in the presence of low population density[50,52]. 

Additionally, the ExpR regulator binds with the self-inducing chemical AHL (acyl-

homoserine lactone) in high bacterial density conditions. This compound then acts as a 

promoter for the visN gene and inhibits the expression of all the genes involved in the 

development of mobility and chemotaxis[53,54]. Moreover, the ExoR/ ExoS/ ChvI 

polysaccharide biosynthesis pathway is also activated.  

The two systems ExpR/luxRs/luxI, SinI and ExoR/ExoS/ChvI and the protein MucR 

interact to regulate mobility as well as to activate the biosynthesis of EPS I and inhibit the 

synthesis of EPS II[41]. The rem gene, which encodes an activator of motility gene expression 

with targets like flaF (a regulatory protein of flagellar biosynthesis) and flgG (a component 

of the basal corposal stem), is suppressed by the activity of MucR protein[41]. Chemical 

experiments, according to Dilanji et al.[55], have shown that EPS II secretion is a high energy-

consuming activity that uses the same quorum sensing control system. The mucR, exoR, 

exoS, exoD, expR, syrM, and phoB are examples of plasmidic regulatory genes that govern 

the EPS I and EPS II production machinery in E. meliloti. The exsB, exoX, and wggR are 

examples of regulatory genes found on the megaplasmid pSymB[56]. In fact, the 

ExoR/ExoS/ChvI system and the ExpR/Sin quorum sensing systems control EPS synthesis 

and motility more than other processes, depending on the stage of bacterial growth. It is 

assumed that MucR plays a crucial role in the coordination of bacterial processes in E. 

meliloti. The ExpR / Sin system abolishes the effect of MucR repression on galactoglucan 

biosynthesis but does not affect the role of MucR on a number of functions that promote 

symbiosis, such as motility repression, the increase of EPS I production and Nod factors[56]. 

The survival and development of symbiotic bacteria in their host environment depend 

on these gene regulatory networks. It is accurate that the Exp/Sin system is found in various 

symbiotic bacteria, including R. etli and E. meliloti, and that it regulates biofilm formation 

and colonization of the host plant root by modulating EPS expression. According to Marie et 

al.[57] and Acosta-jurado et al.[40], the ExoR/ExoS/Chyl system found in E. meliloti and E. 

fredii is involved in the control of nodules' development. In fact, Geiger et al.[58] 's findings 
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suggest that the lack of bacterial phosphatidylcholine in E. meliloti activates the two-

component system of regulation ExoS/ChvI. This latter constitutes a molecular switch for 

changing from a free-living to a symbiotic lifestyle. 

The mechanics of bacterial-plant symbiosis have been better understood thanks to 

research on these systems, which may also have benefits in sustainable agriculture. Some 

bacteria lack a standard genome-encoded quorum detecting system. However, they still have 

three genes (CC_0933, CC_0949, and CC_1356) that are identical to the mucR gene as in the 

case of C. crescentus. This strongly suggests the existence of a complex MucR-regulated 

mechanism involved in polysaccharides production and flagella mobility in C. crescentus[59]. 

Besides, it has been demonstrated that a reduction in the attachment level to the colonization 

surface as well as a loss of the capacity to form a biofilm on roots resulted from the 

suppression of the global receptor RosR (80% homologue mucR), which also regulates the 

biosynthesis of EPS[60]. 

Overall, numerous signaling pathways and gene regulation are involved in the 

regulation of EPS synthesis in bacteria. However, despite the various biosynthesis pathways, 

bacterial EPS production remains very low, which can limit their use. To overcome this 

limitation, several biotechnological approaches have been implemented. The broad positive 

impact of these technologies on EPS biosynthesis has been underlined in the following 

section.  

2.2. Strategies for Exopolysaccharides Production Improvement 

Given the great demand for bacteria with the ability to produce extracellular 

polysaccharides with desired properties, various strategies have recently emerged to improve 

the yield of production or even to trigger changes in the composition and structure of desired 

EPS[61]. Metabolic engineering, culture conditions optimization or even the application of 

growth-limiting conditions (abiotic stresses) can efficiently improve EPSs production by 

several bacterial strains, as discussed in the following section. 

2.2.1. Metabolic engineering  

Metabolic engineering can be easily defined as the production of specific substances 

or molecules, such as chemicals, fuels and drugs, through the disruption of the metabolic 

pathways in cells[62]. Metabolic engineering has been commonly applied to enhance EPS 

biosynthesis, despite the fact that EPSs are naturally produced at low levels. One of the 

strategies is to overexpress genes from the central metabolic pathway, known for providing 

sugar precursors required for EPS biosynthesis[61]. This ultimately increases the availability 
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of sugar precursors, thereby enhancing EPS production. In G.lucidum, the overexpression 

pgm gene, encoding for a phosphoglycomutase, that catalyzes the interconversion of glucose-

6-phosphate into glucose-1- phosphate, resulted in a significant increase in EPS production. 

The increase was estimated to be around 45%[63]. The knock-out of pep (pepF, pepJ and 

pepC) genes in Paenibacillus polymyxa severely altered the production of EPS, which clearly 

underlines the putative role of these genes in EPS biosynthesis process[64]. Indeed, as reported 

by Rütering et al.[64], these genes encode for putative glycosyltransferase catalyzing glycan 

polymerization reaction. Moreover, the deletion in pigA gene, known to be involved in 

xanthomonadin synthesis resulted in an increase xanthan gum. Heterologous expression of 

Pasteurella multocida heparosan synthase enzymes in Bacillus megaterium resulted in an 

increase in heparosan through fed-batch fermentation to reach 2.74g/L[65]. Similarly, the 

introduction of glucose phosphate uridyltransferase and heparosan synthase in the genome 

of Synechococcus allowed the production of higher amounts of heparosan[66]. Hyaluronic 

acid production by Corynebacterium glutamicum strain has been improved through the 

application of genome-scale metabolic modeling. This approach consisted of the constitutive 

expression of hyaluronic acid pathway genes in a C.glutamicum strain, characterized by an 

altered pentose phosphate pathway and reduced glycolysis. By this approach, the authors 

were able to enhance the production of hyaluronic acid titers from 1.3g/L to 28.7g/L[67]. 

Metabolic optimization of the regulatory elements has also been proposed as an 

efficient strategy to increase EPS biosynthesis in bacterial strains. The inducible promoters 

PxylA (xylose inducible); Pgrac (IPTG inducible) and PsacB (sucrose inducible) have been 

successfully employed for the expression of protein of interest, allowing the production of 

target proteins[68]. For Bacillus amyloliquefaciens, the substitution of the native promoter of 

the levansucrase SacB with a strong artificial promoter Pgrac enhanced the production of a 

specific homopolysaccharide; levan[69].   

Overall, metabolic engineering offers a new path for producing high-value EPSs at 

sufficient amounts and possibilities for scale-up production. However, one of the challenges 

associated with this approach is linked to the complexity and diversity of the EPS 

biosynthesis pathways, which can be highly dependent on the bacterial strains. However, a 

thorough knowledge of the key actors in EPSs biosynthesis and regulatory pathways can be 

determinants for the success of metabolic engineering. 

2.2.2. Strains co-cultivation 

It is well established that microorganisms co-culture enhanced their resistance to 

environmental fluctuations, thereby performing complex metabolic activities. EPS 
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production is among the complex metabolic processes triggered by co-culture[70]. The effect 

of bacterial co-cultivation has been well studied in the association of lactic acid bacteria - 

Saccharomyces cerevisiae. One of the great examples of the success of this approach is 

related to the production of kefiran, an exopolysaccharide commonly used in the 

agroindustry. For instance, Lactobacillus kefiranofaciens JCM 6985 co-culture with 

Saccharomyces cerevisiae enhanced kefiran production in a fed-batch system[71]. Likewise, 

Lactobacillus rhamnosus (ATCC 9595, RW-9595M and R0011) strains co-culture with 

Saccharomyces cerevisiae enhanced EPS production by 39%, 42% and 49%, respectively, 

due to the activation of EPS operon transcription[72]. Similarly, Lactobacillus paracasei co-

culture with S. cerevisiae increased EPS culture compared to monoculture. This increase in 

EPS was linked to the over-expression of polyprenylglycosylphosphotransferase encoding 

gene[73]. The same authors also proposed that EPS production can be induced by the direct 

interaction between yeast and bacteria, which triggers EPS synthesis in lactic acid bacteria 

cells, allowing a better cell adhesion and thus a superior lactic acid consumption by yeast 

cells[73].  

Bacterial-microalgal consortium has recently emerged as a promising way to enhance 

EPS production[74]. Bacterial strains co-cultivation (Pseudomonas sp., Brevundimonas sp. 

and Proteiniphilum sp.) with Chlorella sp. had a positive impact on EPS production in batch-

culture system. Indeed, Liu et al.[75] had associated the increase in EPS amounts with the 

maintenance of consortium stability. 

As mentioned above, EPS biosynthesis can notably be enhanced by bacterial co-

culture with yeast (Saccharomyces cerevisiae) or microalgae (Chlorella sp.). This can be 

achieved through a good knowledge of the optimum culture conditions. 

2.2.3. Culture conditions optimization 

It is well established that EPS production, structure and properties are highly 

dependent on several factors, including strain type, culture medium composition and 

fermentation conditions[76,77]. A large number of studies focused on optimizing fermentation 

conditions to improve EPS yield of production. The use of different carbohydrate sources as 

substrates had significant effects on bacterial growth and EPS production[78]. For instance, Li 

et al.[79] reported that the use of sucrose at 80g/L increased the EPS amounts produced by 

Streptococcus thermophilus. Similarly, gellan exopolysaccharide production by 

Sphingomonas paucimobilis growing strains was highly increased in sucrose-containing 

medium. In addition to sucrose, the use of glucose as a carbon source yielded the highest EPS 

amounts of 8.87g/L by Chryseobacterium indologenes MUT.2. Meanwhile, the lowest EPS 
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values of 2.55, 2.39 and 2.11 were recorded with the use of dextrin, mannose and starch 

respectively[80]. Fructose can also prompt EPS production in some bacterial strains. This is 

the case of Pantoea BM39 strain, which produced up to 11.05 g of glucan/L when cultured 

in the presence of 80g/L of fructose[81]. Besides carbon, other studies showed that carbon/ 

nitrogen ratio is also important to achieve a better EPS yield. Several studies clearly 

demonstrated that a higher carbon/nitrogen ratio along with sufficient nitrogen and carbon 

amounts can yield a higher EPS amounts[79,82]. Indeed, the marine bacteria; Saccharophagus 

degradans produced up to 2.1g of EPS/L when glucose/ammonium ratio (C/N ratio) reached 

a value of 100 [82]. For Klebsiella pneumonia, the maximum EPS production was obtained 

with the use of 10g/L of glucose as a carbon source and potassium nitrate amended at the 

concentration of 2g/L as a nitrogen source[83]. 

Besides carbon and nitrogen, other nutrients like phosphate, magnesium, calcium, 

iron and zinc can influence EPS biosynthesis; since they can affect the conversion of carbon 

sources into polysaccharides[84]. Phosphate variation can stimulate the production of EPS by 

some bacterial strains, such as Azotobacter vinelandii and Klebsiella spp. Maximum EPS 

amounts were obtained in the absence of phosphate or in phosphate limitation conditions[82]. 

The effect of the other nutrients on EPS production is a subject of controversy. Some 

researchers reported a beneficial effect of iron, calcium, zinc and manganese privation on 

microbial growth and EPS biosynthesis, as observed with Saccharophagus degradans. 

However, other studies showed that the presence of these elements triggers EPS 

synthesis[17,82].  

pH can also influence EPS production. A neutral pH level seems to be beneficial for EPS 

production. For instance, Streptococcus thermophilus produced EPSs were barely 

undetectable when the bacterial strain was grown at pH adjusted to 4.0 and 4.5. Meanwhile, 

bacteria cultivation at a pH of 6.5 yielded the highest EPS amounts of 338 mg of EPS/L under 

microaerobic conditions[85]. Similar findings have been reported for Lactobacillus fermentum 

strain by Shi et al.[77]. The authors found that L.fermentum achieved 3-fold higher EPS 

biosynthesis in a defined medium (CDM) with a pH adjusted to 6.5. For S.thermophilus, the 

maximum EPS amount was reached at a pH of 7.0[78]. 

It is well-established that temperature is one of the most important parameters 

influencing EPS synthesis[86]. An increase/ decrease in the culture temperature from the 

optimum values resulted in a decrease in EPS production[87]. As a way to improve EPS 

production by S.thermophilus, Li et al.[79] have tested different temperatures ranging between 

27°C and 40°C. They found that the highest EPS production of 250mg/L was achieved when 
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the culture was maintained at 37°C. It is worth noting that EPS from S.thermophilus strains 

is produced at relatively low levels[88]. For bacteria belonging to the genus Lactobacillus, 

maximum EPS amounts were recorded when the bacterial strains were cultivated at 30°C, 

which corresponds to the optimum temperature, yielding the highest EPS values of 433.61, 

408.53 and 377.50mg/L, respectively, for L. plantarum MF460, L.plantarum MF303 and 

L.plantarum MF176[86]. 

Globally, EPS production can notably be improved by the optimization of bacterial 

strain growth and culture conditions by varying media culture composition, temperature or 

pH. The challenge is to identify the best culture conditions, which are highly dependent on 

the bacterial strain. 

2.2.4. Sub-optimal growth conditions — abiotic stresses 

It is well-recognized that abiotic stresses trigger the production of EPSs. Indeed, 

bacterial strains tend to produce EPSs as a cellular defence response to minimize the harsh 

effects of abiotic stresses[89]. Thus, the ability of bacterial strains to produce high amounts of 

EPSs in response to stress can be explored. Several examples of the success of this approach 

have been reported in the literature. EPS production by Lactobacillus confuses TISTR 1498 

was notably enhanced with media supplementation with moderate salt stress conditions[90]. 

The maximum yield of 86.36g/L was produced by the salt-amended medium with 5% of 

NaCl[90]. Similar results have been reported for Leuconostoc pseudomesenteroides 406 when 

grown in the presence of 5% NaCl[91]. For Pseudomonas putida GAP-P45, Sandhya and 

Ali[92] evaluated the effects of various abiotic stress conditions on EPS biosynthesis. They 

found that bacteria exposure to these stresses (high temperature, drought and salt stress) 

triggered the production of EPSs. They were able to record the highest amounts due to 

drought stress. Besides salt and drought stresses, excessive temperature was efficient for 

some bacterial strains, as is the case of Bifidobacterium bifidum. For instance, it was noticed 

that sub-lethal thermic stress increased B. bifidum viability and enhanced EPS production[93]. 

For Sinorhizobium fredii HH103, it seems that mannitol-induced non-ionic osmotic stress 

triggered the overproduction of EPSs through the positive regulation of key genes involved 

in EPS biosynthesis including, exol, exoN and exoF[94]. It is worthy to note that, in some 

cases, abiotic stresses do not prompt the overproduction of EPSs in some bacterial strains, 

such as Pseudomonas tequilensis J12 and Pseudomonas aeruginosa PM389[95], thereby 

suggesting that EPS production/overproduction is a strain-dependent phenomenon. 
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3. Extraction Methods 

EPS extraction techniques can be divided into physical, chemical and physico-

chemical methods[96,97]. The choice of an appropriate extraction method for EPS is typically 

influenced by factors such as the chemical composition of the EPS, extraction conditions, 

and the presence of interfering substances[98]. 

As presented in Table 1, the majority of studies used the following steps to extract 

EPS in various media, which include physical and chemical methods. EPS extraction 

involved incubation using the required growth media. The enzymes were then inactivated 

through cell suspension heating followed by centrifugation to remove insoluble 

compounds[20]. Trichloroacetic acid (TCA) was then added, followed by further 

centrifugation to remove proteins[99]. EPS was precipitated using an equal volume of ethanol 

and could be freeze-dried to obtain crude EPS[100]. In some studies, dialysis was used to 

remove residual molecules after co-precipitation with EPS[101]. 

Although there is no standardized extraction method recommended for EPS, many 

studies have compared the efficiency of different extraction protocols[97,102,103]. Three 

extraction techniques, including Cation Exchange Resin (CER), NaOH + formaldehyde, and 

ethylene diamine tetraacetic acid (EDTA), were compared[97]. The authors concluded that 

CER was the optimal extraction method of bound-EPS from Mediterranean soils as it 

provided a better compromise in terms of efficiency, handling time, and cost. In fact, although 

the CER method exhibited the lowest extraction efficiency, it also demonstrated the lowest 

level of EPS contamination[97]. 

In another study, Gangalla et al.[104] optimized the extraction of EPS produced by 

Bacillus aerophilus rk1 through the modification of several factors, including carbon and 

nitrogen sources, pH values varying from 6.0 to 8.0, time from 12 to 96 h, and incubation 

temperatures, from 20 to 45°C. The optimum conditions found were pH 7.0, temperature 

30°C, and incubation time 72 h, yielding 3.73 g/L. 

Hu et al.[99] investigated the effect of variation of three factors to optimize the 

extraction conditions: pH (7–9), sodium nitrate concentration (0.5–1.5%), and sodium citrate 

concentration (1.5–2.5%). The findings showed that the highest EPS yield (8.957 g/L) was 

reached at pH 8, 1% sodium nitrate concentration, and 2% sodium citrate concentration. 

Zhao et al.[105] tested three factors, including precipitation temperature, precipitation 

time, and ethanol concentration in order to optimize EPS extraction. The maximum EPS yield 
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(53.43g/L) was obtained at 4°C precipitation temperature, 12 h precipitation time, and 

80mL/dL ethanol concentration. 

After the extraction, further purification may be required due to the possibility of 

residual proteins, DNA, and chemicals. This can be achieved by re-precipitation from an 

aqueous solution, chemical deproteinization, and membrane processes such as 

ultrafiltration[96]. The choice of the purification method depends on the specific 

characteristics and level of purity needed for the application of EPS. Some commonly used 

methods for the purification of exopolysaccharides include Sevag, TCA, ion exchange 

chromatography, and diethylaminoethyl (DEAE)-cellulose column chromatography 

methods[105–108]. Additional methods, such as gel filtration and size exclusion 

chromatography, can also be used during the purification process[109,110]. For example, Pei et 

al.[110] reported the application of gel filtration to purify levan produced by Bacillus 

megaterium PFY-147 through a Sephadex column, and EPS was eluted with Milli-Q water 

at a flow rate of 0.2 mL/min. Chen et al.[106] have been used anion exchange chromatography 

for the purification of EPS produced by Lactobacillus reuteri in order to remove the negative 

net charge, and the sample was eluted with NH4HCO3 at a flow rate of 2 mL/min. In addition, 

Patel et al.[111] investigated a study to compare the extraction of EPS obtained from 

Porphyridium cruentum by alcoholic precipitation, membrane separation, and dialysis 

techniques and found that diafiltration through a 300 kDa membrane proved to be the most 

efficient method. It should be noted that in order to select the suitable purification method, it 

is crucial to evaluate its effects on the properties, recovery, and purity of EPS, as certain 

purification methods may cause a decrease in product recovery or negatively impact EPS 

properties[96,112]. Furthermore, it was reported that it is not suitable to purify EPS from marine 

microalgae, since they are frequently contaminated by salts that co-precipitate with them[113]. 

Recently, efficient alternative tools have been developed to improve EPS production, 

including ultrasonication and microwave-assisted techniques. The application of ultrasonic 

treatment for six cycles of 5 minutes each resulted in an EPS yield of 218.78mg/g, which was 

2.52-fold greater than the control group[114]. In addition, the application of microwave 

treatment also significantly increased the production of EPS by 2.3 folds compared to the 

untreated group[115]. Indeed, the combined effect of microwave and ultrasound showed a 

greater increase in EPS production compared to the combined impact of autoclave and 

ultrasound[116]. 

There are several factors that can be involved in the extraction of EPS. EPS producing 

microorganisms are found in several ecological sources. The source of EPS, such as the type 

https://link.springer.com/chapter/10.1007/978-981-16-0045-6_3
https://link.springer.com/chapter/10.1007/978-981-16-0045-6_3
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/sephadex
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of bacteria strain, can affect the extraction process. Subsequently, the cultivation conditions 

and parameters, including the culture media composition and fermentation pattern, can 

adapted to optimize the growth of the chosen strain[117]. For instance, by using sucrose as 

carbon source, lactic acid bacteria strains from Weissella confusa/cibaria have been found to 

produce EPS with significant yields ranging from 3.2g/L to 47.1g/L, along with a high 

molecular weight dextran fraction[118]. 

The carbohydrate content of EPS is affected by several factors, including the strain, 

the type of carbon substrate used in the growth media, the availability of nutrients such as 

nitrogen (N) and phosphorus (P), and the extraction method employed for EPS extraction[119]. 

These factors can have an impact on the composition, quantity, and properties of the EPS. It 

was reported that Tetragenococcus halophilus produced two EPS fractions. EPS-1 had a 

significantly higher molecular weight (Mw) of 2613.4 kDa compared to EPS-2 with a MW 

of 93.4kDa, suggesting that a single strain has the ability to produce distinct 

exopolysaccharides with significantly different MWs[120]. Lactobacillus plantarum isolated 

from Egyptian cheese products produced the highest EPS yield of 11.86g/L compared with 

other Lactobacillus strains, indicating that EPS production varies among strains, even when 

obtained from the same origin[121]. Extraction conditions have a significant impact on yield, 

MW and composition[122]. The hydrolysis of probiotic EPS with trifluoroacetic acid (TFA) 

using various times showed that the highest concentration of monosaccharides was obtained 

at 4 hours of acid hydrolysis[106]. Chi et al.[123] found that acid extraction method provided 

the highest MW (41.1kDa) and the best yield (24.7%) of polysaccharide from Enteromorpha 

prolifera compared to the alkali and water extraction techniques. Furthermore, extraction of 

BPS-2 from Bacillus thuringiensis using multi-enzyme hydrolysis coupled with gel 

chromatography produced a heteropolysaccharide with a MW of 29.36kDa, and contained 

63.1% amino sugars (D-Galactosamine and Glucosamine), showing its specific chemical 

composition[124]. The most commonly used technique to quantify the carbohydrate content is 

phenol-sulfuric acid method (Table 1). Anthrone‑sulfuric acid method is another colorimetric 

technique that can be used for EPS quantification[124]. Quantification of EPS by nuclear 

magnetic resonance (NMR) and spectrophotometric methods was also used to validate the 

traditional techniques[125]. Indeed, NMR is the most efficient method, as acid hydrolysis may 

fail to release all monosaccharides or result in the degradation of certain carbohydrates during 

the process of acid hydrolysis[126]. In addition, the spectrophotometric method may also not 

be able to detect some complex carbohydrates in EPS samples[125,126]. 

There are several physicochemical properties that should be determined in order to 

evaluate the structural characteristics of EPS, including molecular weight, monosaccharide 
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composition, type of glycosidic linkage, etc. The different methods used for EPS 

characterization are shown in Table 1. To determine the average molecular weight (MW), 

high-performance size-exclusion chromatography (HPSEC) with refractive index (RI) and 

multi-angle laser light scattering (MALLS) were used[109]. Gel permeation chromatography 

(GPC) using RI and MALLS as detectors was also used to determine the MW of EPS[127]. 

The monosaccharide composition has been carried out by several methods, including high-

performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-

PAD), high-performance liquid chromatography (HPLC) system with pre-column 

derivatization, and gas chromatography coupled with mass spectrometry detector (GC–MS) 

after acid hydrolysis and derivatization[128–130]. The type of glycosidic bond was identified by 

methylation analysis using GC–MS following hydrolysis, reduction, and acetylation[109,127]. 

Furthermore, NMR is a powerful analytical technique that can be used to determine the 

specific glycosidic linkages between monosaccharide units, while Fourier-transform infrared 

(FT-IR) spectroscopy allows the identification of functional groups present in EPS[131,132]. 

Thermal properties of EPS, such as melting point and thermal stability, can be determined by 

thermogravimetric analysis (TGA), derived thermogravimetric (DTG) analysis, and 

differential scanning calorimeter (DSC) analysis[110,130,132]. In addition to these mentioned 

techniques, other potent analytical methods such as X-ray diffraction (XRD), scanning 

electron microscopy (SEM), and atomic force microscopy (AFM) have been employed to 

analyze the crystalline structure and morphological characteristics of EPS[124,133,134]. 

The ability of strains to produce EPS is widespread among different species, although 

the physiological function of these molecules is still not fully understood[101]. It was reported 

that certain monosaccharides, including uronic acids and aminosaccharides are commonly 

identified in the EPS produced by marine bacteria[135]. These findings are consistent with the 

data shown in Table 1. For instance, Alshawwa et al.[136] showed that EPSR5 isolated from 

Kocuria sp. marine bacteria contained sulfate, uronic, and hexose amine at proportions of 

25.6%, 21.77%, and 13.55%, respectively. Selim et al.[137] reported that the major fraction of 

EPS-producing Bacillus cereus strain from marine sediment contained uronic acid at 

percentage of 28.7%. In addition, Awady et al.[138] found that EPSNC2 isolated from marine 

Streptomyces hirsutus was a highly acidic heteropolysaccharide which contained 72.73% 

uronic acid, and composed of glucuronic acid: galacturonic acid: mannose: glucose: 

arabinose with molar ratio 1.2: 0.6: 0.2: 0.1: 0.1, respectively. Indeed, EPSNC2 exhibited a 

strong antioxidant ability due to the high occurrence of hydroxyl groups in uronic acid[138]. 

On the other hand, it seems that the majority of the EPS extracted from lactic acid bacteria 

(LAB) are classified as heteropolysaccharides, which mainly consist of 3 to 8 units, with 



PMMB 2023, 6, 1; a0000384 15 of 82 

 

glucose, galactose, mannose, and rhamnose as the major monosaccharides (Table 

1)[117,130,139,140]. 

Table 1. EPS extraction methods, purification, and quantification. 

Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

Lactobacillus 

kefiri 

Chinese 

kefir grains 

MSR101 EPS 

Carbohydrate (93.35%) 

Uronic acid (2.15%) 

Sulfated (2.7%) 

Glucose, rhamnose and 

arabinose in a molar 

ratio of 5:1:3, 

respectively 

Boiled in a water 

bath, centrifugation, 

TCA treatment, 

ethanol precipitation, 

dissolved in 

sterile distilled water 

0.75g/L 

phenol-sulfuric 

method, meta-

hydroxybiphenyl 

method, barium 

chloridegelatine 

method 

FTIR, NMR, TGA, 

XRD  

[131] 

Bacillus 

thuringiensis  
Bean paste 

Carbohydrate (91.29%) 

Monosaccharide 

composition (μmol/L) : 

D-Galactosamine 5.53  

Arabinose 1.77  

Glucosamine 4.74  

Glucose 3.24  

Mannose 1.00 

Organic extraction, 

ethanol precipitation, 

dialyzing and freeze 

drying, 

centrifugation, 

purification by 

Superdex 200 

column 

16.19g/L 

anthrone‑sulfuric 

acid method, UV–

visible, HPGFC, 

FT-IR, SEM, ion 

chromatography, 

NMR 

[126] 

Arthrospira 

Platensis 

Microbial 

Culture 

Collection  

ND 

Centrifugation, 

purification by 

dialysis, and freeze 

drying 

317.93 

μg/mg 

phenol-sulfuric 

acid method 
[141]

 

Bacillus 

circulans 

Slimy layer 

of coconut 

Monosaccharide 

composition (Glucose, 

Mannose, and Galactose) 

Centrifugation, 

incubation overnight 

in ethanol, 

purification by 

dialysis, 

lyophilization 

0.065g/L 

phenol-sulfuric 

acid method 

FTIR, NMR, 

HPLC, GC–MS 

[142] 

Lactococcus 

lactis subsp. 

cremoris FC 

Fermented 

milk 

Rhamnose, galactose, 

and glucose 

Ethanol precipitation 

followed by TCA 

treatment, dialyzing 

against distilled 

water and 

lyophilisation 

ND 
HPLC, GC, GC-

MS, NMR 
[143] 

Lactobacillus 

plantarum 

LRCC5310 

Kimchi ND 

Centrifugation, 

ethanol precipitation, 

incubation for 30 

min, drying at 4°C 

0.64g/L 

field-emission 

scanning electron 

microscopy 

[144] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

Lactobacillus 

confusus 

TISTR 1498 

Culture 

collection 

Carbohydrate (81.9%) 

Homopolysaccharide (D-

glucose) 

Centrifugation, 

ethanol precipitation, 

TCA, precipitation 

using 3 volumes of 

ethanol, drying at 

room temperature 

6.12g/L 

phenol-sulphuric 

acid method, 

HPLC, GC-MS, 

NMR, HPSEC 

 

[145] 

Streptomyces 

hirsutus 

NRC2018 

Marine 

sediments 

Uronic acid (72.73%) 

 

Glucuronic:galacturonic:

glucose:mannose:arabino

se with molar ratio 

1.2:0.6:0.1:0.2:0.1, 

respectively 

TCA treatment, 

centrifugation, 

neutralization with 

NaOH, precipitation 

using 4 volumes of 

ethanol, 

centrifugation and 

dialyzing, 

purification by 4 

volumes of absolute 

cold ethanol, 

dialyzing against 

distilled water 

ND 

Turbidity method, 

m-hydroxybiphenyl 

colorimetric 

method, HPLC, 

FTIR 

[146] 

Several 

bacterial 

strains 

Fermented 

vegetables 

Mannose, glucosamine, 

rhamnose, glucose, 

galactose, xylose 

Precipitation by cold 

ethanol, 

centrifugation, 

purification using 

anion exchange 

chromatography 

1.74–

7.28g/L  

Phenol-sulphuric 

acid method, HPCL 
[106] 

Lactobacillus Tempoyak  ND 

Precipitation using 2 

volumes of ethanol, 

centrifugation, 

dialyzing against 

distilled water 

0.10–

0.85g/L  

Phenol-sulphuric 

acid method 
[147] 

Rhodococcus 

erythropolis 

HX-2 

Xinjiang Oil 

Field 

Carbohydrate (79.24%) 

Glucose (27.29%), 

galactose (24.83%), 

fucose (4.79%), mannose 

(26.66%) and glucuronic 

acid (15.84%) 

Heating at 90°C, 

centrifugation, TCA 

treatment to remove 

protein, precipitation 

using 3 volumes of 

ethanol, dialyzing 

and freeze drying, 

purification by gel 

filtration 

3.736g/L 

phenol-sulfuric 

acid method, anion 

exchange 

chromatography, 

high-performance 

size-exclusion 

chromatography, 

HPLC, UV-visible 

spectrophotometer, 

FT-IR, NMR, 

TGA, SEM, AFM 

[99] 

Lactobacillus 

acidophilus 

Microbiolog

ical 

Resource 

Center 

ND 

Alcohol 

precipitation, drying 

at 60°C 

0.35g/L HPLC [148] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

Bacillus 

thuringiensis 

Marine 

ascidian 

Fructose (43.8%), 

galatose (20%), xylose 

(17.8%), glucose (7.2%), 

rhamnose (7.1) and 

mannose (4.1%) 

Deproteinization by 

Sevag method, 

purification through 

gel filtration 

chromatography 

60.1% 

phenol-sulfuric 

acid method, 

HPLC, FT-IR, 1H 

NMR 

[149] 

Lactiplantiba

cillus 

plantarum 

DMDL 9010 

Fermented 

pickles 

Fucose (0.13%), 

arabinose (0.69%), 

galactose (8.32%), 

glucose (27.57%), 

mannose (62.07%), 

fructose (0.58%) and 

galacturonic acid 

(0.46%) 

Sevag reagents 

precipitated ethanol 

and deproteinized to 

acquire crude EPS, 

lyophilization, 

purification using 

anion exchange 

chromatography, 

column purification, 

freeze-drying 

42.40% 

Phenol-sulfate 

method, HPGPC, 

UV, FT-IR, SEM, 

TG, NMR, HPLC, 

GC-MS 

[150] 

Lactiplantiba

cillus 

plantarum 

MM89 

Human 

breast milk 
Glucose and mannose 

Precipitation by 

double volumes of 

ethanol, 

centrifugation, 

further purification 

by dialysis, 

purification by 

DEAE-52 

chromatography, 

freeze-drying 

95.63% 

phenol–sulfuric 

acid method, FTIR, 

NMR, GC-MS, 

GPC 

[107] 

Pseudomonas 

Aeruginosa 

Microbial 

Culture 

Collection 

ND 

Ethanol 

precipitation, 

incubation overnight, 

centrifugation, 

purification by 

dialysis against 

double distilled 

water and 

lyophilization 

0.0924–

0.1027 

g/L 

phenol‑sulfuric 

acid method, FTIR 
[151] 

Leuconostoc 

mesenteroide

s 

Semi-hard 

Italian 

Cheese 

EPS_B3 

Dextran  

TCA treatment, 

centrifugation, 

precipitation using 

three volumes of 

cold absolute 

ethanol, dialyzing 

and freeze drying 

1.06g/L 

FT-IR, NMR, UV–

Vis, HPLC, HPLC-

SEC 

[152] 

Kocuria sp. Red Sea 

EPSR5 

Sulfated (25.6%), uronic 

acid (21.77%), hexose 

amine (13.55%). 

TCA treatment, 

centrifugation, 

precipitation by four 

volumes 

6.84g/L 

UV absorption 

spectrum, FTIR, 

Dodgson and Price 

technique, HPLC 

[136] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

Glucose, galacturonic 

acid, arabinose, and 

xylose in a molar ratio of 

2.0:0.5:0.25:1.0 

from cold ethanol, 

redissolving in 

deionized water and 

dialyzing  

Weissella 

cibaria 

Korean 

kimchi  

Glucose (38.95%) and 

galactose (61.04%) 

Ethanol 

precipitation, 

centrifugation, 

deproteinization by 

the Savage solution, 

dialyzing and freeze 

drying, purification 

using a 

DEAE-sepharose 

(GE Healthcare, 

Sweden) fast flow 

column, second 

purification by sub-

column and 

lyophilization 

ND 

Phenol-sulfuric 

acid assay, HPLC, 

FTIR, NMR 

[153] 

Streptococcus 

thermophilus 

and 

Lactobacillus 

bulgaricus 

Labaneh 

(traditional 

yogurt-like 

product) 

EPS-S: 

Glucose, mannose, and 

galactose, with molar 

ratios of 17.8:1.35:0.5 

EPS-L: 

Glucose, mannose, and 

galactose, with molar 

ratios of 14.2:1.2:0.75 

Precipitation by 

double volume of 

chilled absolute 

ethanol followed by 

TCA treatment, 

centrifugation, 

dialyzing and freeze 

drying 

ND 
GPC, GC-MS, 

NMR, FTIR 
[154] 

Lactobacillus 

curvatus 

SJTUF 62116 

Gymnocypri

s 

przewalskii 

Carbohydrate (96.03%) 

Glucosamine, glucose, 

mannose, and glucuronic 

acid (GluA) with a 

relative molar ratio of 

0.36:1:2.49:0.39 

TCA treatment, 

centrifugation, 

precipitation by 

chilled absolute 

ethanol, crude EPS 

was dissolved in 

distilled water and 

dialyzed against 

distilled water 

followed by 

lyophilizing 

0.28g/L 

Phenol‑sulfuric 

acid method, 

HPSEC-MALLS-

RI, HPAEC, UV–

vis spectroscopy, 

FTIR, NMR, SEM, 

AFM, TGA 

[140] 

Lactiplantiba

cillus 

plantarum 

RO30  

Romi cheese 

Carbohydrate: 85.83% 

(w/w) 

Glucuronic acid, 

mannose, glucose, and 

arabinose with a molar 

TCA precipitation, 

centrifugation, 

neutralization with 

NaOH, precipitation 

by three volumes of 

cold absolute 

ethanol, 

4.23g/L 

Phenol–sulfuric 

acid method, 

HPLC, 

HPLC/GPC, 

FT‑IR, 1HNMR 

[155] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

ratio of 

2.19:0.1:0.536:0.104 

centrifugation, 

dissolved in 

ultrapure water and 

dialyzed 

for 2 days at 4 °C 

against the same 

solution, re-

precipitation using 

three volumes of 

cold ethanol 

Pediococcus 

pentosaceus 

E8 

Cereal 

vinegar 

Mannose, glucose, and 

galactose at a molar ratio 

of 80.39: 18.12: 1.49 

Precipitation by three 

volumes of pre-

chilled ethanol, 

deproteinization 

using papain 

combined with 

Sevage reagent, 

dialyzing against 

distilled-deionized 

water followed by 

lyophilizing, 

purification by 

anion-exchange 

chromatographic 

column 

97.9% 

Phenol–sulfuric 

acid colorimetric 

method, MALLS, 

HPSEC, HPAEC-

PAD, GC-MS, 

FTIR, NMR, TGA, 

DTG, XRD 

[130] 

Bacillus 

albus DM-15 

Indian 

Ayurvedic 

traditional 

medicine 

Dasamoolari

shta 

Molar percentage: 

Glucose (71.32%), 

galactose (13.55%), 

xylose (9.38%), and 

rhamnose (5.75%) 

Precipitation by two 

volumes of absolute 

ice-cold ethanol, 

centrifugation, 

dialyzing against 

sterile deionized 

water, purification 

using ion-exchange 

chromatographic 

column and gel-

filtration 

chromatography 

followed by 

lyophilizing 

0.29g/L 

Phenol-sulfuric 

acid assay, size-

exclusion 

chromatography, 

GC-MS, UV-VIS, 

FT-IR, NMR, XRD 

[133] 

Bacillus 

subtilis LR-1 

Hunan 

fermented 

meat 

Glucose (82.95%) and 

mannose (13.58%) 

Centrifugation, 

deproteinization by 

the 

Sevage method, 

precipitation by three 

volumes of pre-

cooled ethanol, 

1.86g/L 

Phenol-sulfuric 

acid method, gel 

permeation 

Chromatography, 

HPLC, HPGPC, 

FT-IR, NMR 

[105] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

dialyzing and freeze-

drying, purification 

using anion-

exchange column 

and gel column 

Lactiplantiba

cillus 

pentosus B8 

Sichuan 

Pickle 

LPB8-0: 

Carbohydrate (96.2%) 

Glucose (84.24%) and 

mannose (15.76%) 

LPB8-1: 

Carbohydrate (99.1%) 

Mannose (77.74%), 

glucose (21.08%), and 

galactose (1.18%) a 

Ethanol 

precipitation, 

deproteinization by 

the 

Sevage method, 

dialyzing, 

lyophilizing, 

purification using 

anion-exchange 

chromatographic 

column, further EPS 

purification by size 

exclusion 

chromatographic 

columns followed by 

freeze-drying 

1.40g/L 

Phenol-sulfuric 

acid method, UV–

vis 

spectrophotometer, 

HPSEC, GC–MS, 

FTIR, NMR, TGA, 

XRD, SEM, AFM 

[109] 

Bacillus 

cereus 

Saudi Red 

Sea coast 

Uronic acid (28.7%) 

Glucose, galacturonic 

acid, and arabinose at a 

molar ratio of 2.0: 0.8: 

1.0 

Treatment with TCA 

to remove protein, 

neutralization using 

NaOH, ethanol 

precipitation, 

centrifugation, 

dialyzing against 

deionized water 

7.95g/L 

FTIR, m-

hydroxybiphenyl 

colorimetric 

technique, Aminex 

Carbohydrate 

Analysis Column, 

HPLC, GPC 

[137] 

Bacillus 

subtilis 

Marine 

sediment 

Sulfated polysaccharide 

(48%) 

Glucose, rhamnose, and 

arabinose at a molar ratio 

of 5:1:3 

Treatment with TCA 

to remove protein, 

centrifugation, 

neutralization using 

NaOH, ethanol 

precipitation, 

dialyzing against 

deionized water 

8.12g/L 

 

FT-IR, UV-Vis, 

HPGPC, GPC, 

Aminex 

Carbohydrate 

Analysis Column, 

XRD 

[156] 

Bacillus 

haynesii 

CamB6 

acidic (pH 

5.82) 

Campanario 

hot spring 

Mannose (66%), glucose 

(20%), and galactose 

(14%) 

Treatment with TCA 

to precipitate the 

proteins, 

centrifugation, 

acetone precipitation, 

centrifugation, 

dialyzing followed 

by lyophilization 

2.90g/L 

AFM, SEM, 

HPLC, GPC, FTIR, 

NMR, TGA 

[128] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

Weissella 

confusa 

KR780676 

Idli batter 

(Indian 

traditional 

fermented 

food) 

Galactan EPS 

Treatment with TCA 

to eliminate the 

proteins, ethanol 

precipitation, 

centrifugation, 

dialyzing and freeze-

drying 

ND SEM [157] 

Lacticaseibac

illus 

paracasei 

Subsp. 

paracasei 

SS-01 

Yogurt  
Molecular weight: 

49.68kDa 

Ethanol 

precipitation, 

enzymatic 

hydrolysis, ethanol 

precipitation, freeze 

drying, dialyzing 

followed by 

lyophilization 

ND 

UV-Vis, FT-IR, 

GPC, SEM, AFM 

and TGA 

[158] 

Bacillus 

xiamenensis 

RT6 

Sediments 

of the river 

source 

in Río Tinto 

(Huelva), 

Spain 

EPSt 

Glucose (60%), mannose 

(20%), and galactose 

(20%) 

 

 

Precipitation by three 

volumes of cold 

ethanol, 

centrifugation, 

dialyzing, freeze-

drying, purification 

using anion 

exchange column 

0.75g/L 

Phenol-sulfuric 

acid method, gel 

filtration 

chromatography, 

GC–MS, 

HPLC/MS-MS, 

ATR-FTIR, TGA, 

DSC 

[129] 

Saccharomyc

es cerevisiae 

Y3 

Sweet 

glutinous 

rice 

(Chinese 

fermented 

food) 

Y3 EPS 

Mannose (85.41%) and 

glucose (9.29%) 

Treatment with TCA 

to remove the 

proteins, 

centrifugation, 

precipitation by three 

volumes of ethanol, 

centrifugation, 

dialyzing followed 

by lyophilization, 

purification by gel 

filtration 

chromatography 

4.52g/L  

HPLC, GPC, FT-

IR, IR, GC–MS, 

NMR, XRD, UV–

Vis, SEM, AFM, 

DSC, TGA, DTG 

[127] 

Leuconostoc 

mesenteroide

s SL and 

Enterococcus 

viikkiensis N5 

Moroccan 

raw donkey 

milk  

EPS-SL:  

Glucose (62.84%) and 

galactose (37.16%) 

EPS-N5:  

Glucose (79%), 

galactose (12.7%), and 

mannose (8.3%) 

Treatment with TCA 

followed by 

centrifugation to 

remove the proteins, 

precipitation by two 

volumes of cold 

ethanol, 

centrifugation, 

dialyzing against 

deionized water, 

purification using gel 

filtration 

0.67 g/L 

(EPS-SL) 

0.90 g/L 

(EPS-

N5) 

Phenol-sulfuric 

acid method, GC–

MS, FTIR, UV–

Vis, NMR, SEM, 

TGA 

[159] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

chromatography, 

freeze-drying 

Rhizopus 

nigricans 
ND 

EPS2-1:  

Carbohydrate (98.56%) 

Man, Gal, Glc, Ara, and 

Fuc at a molar ratio of 

0.519:0.204:0.065:0.031 

and 0.029 

Precipitation by four 

volumes of ethanol, 

deproteinization, 

decoloration, 

dialysis, 

lyophilization, 

purification by 

column 

chromatography 

0.20g/L  

Phenol–sulfuric 

acid method, 

HPGPC, HPIC, FT-

IR, UV 

Spectroscopy, GC-

MS, NMR, TEM, 

AFM 

[160] 

Lactobacillus 

kunkeei AK1 
Bee pollen 

EPS AK1 (dextran type 

EPS) 

Precipitation by 

chilled ethanol, 

centrifugation, 

treatment with TCA 

to remove the 

proteins, 

neutralization, 

dialyzing, 

lyophilization 

ND 

HPLC, GPC, 

NMR, FTIR, TGA, 

DSC, SEM, AFM, 

XRD 

[134] 

Tetragenococ

cus 

halophilus 

Soya sauce 

moromi 

EPS-1: 

Carbohydrate (92.29%) 

Galactose, glucose, 

mannose and glucuronic 

acid at a molar ratio of 

(1.00:5.57:2.69:1.09) 

EPS-2: 

Carbohydrate (95.12%) 

Glucose and mannose at 

a molar ratio of 

(1.00:5.93) 

Treatment with TCA 

to remove protein, 

precipitation by three 

volumes of pre-

chilled absolute 

ethanol, dissolving in 

ultrapure water, 

dialyzing, 

lyophilizing, 

purification using 

both anion-exchange 

chromatography and 

gel filtration 

chromatography  

0.45 g/L 

EPS-1 

(25%) 

EPS-2 

(27.5%) 

Phenol–sulfuric 

acid method, UV–

vis, HPAEC-PAD, 

GC–MS, NMR, 

SEM, AFM 

[120] 

Tetragenococ

cus 

halophilus 

SNTH-8 

Soybean  

Crude polysaccharide: 

Sugar contents (75.24%) 

Sulfated groups (0.25%) 

THPS-1: 

Sugar contents (92.16%) 

Uronic acid (0.35%) 

Sulfated groups (0.16%) 

Arabinose, xylose, 

fucose, galactose, 

Treatment with TCA 

to remove protein, 

precipitation by 

thrice the volume of 

anhydrous ethanol, 

centrifugation, 

dialyzing, 

lyophilizing, 

purification using 

both ion-exchange 

chromatography and 

1.00g/L 

Phenol–sulfuric 

acid method, 

sulfuric 

acid carbazole 

method, barium 

chloride-gelatine 

colorimetry, HP-

GPC, HPLC, UV, 

FT-IR, SEM, 

NMR, GC–MS 

[108] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

glucose, and glucuronic 

acid, at molar ratios of 

1.66:38.95:2.11:26.12:29

.73:1.43 

THPS-2: 

Sugar contents (91.08%) 

Uronic acid (2.38%) 

Sulfated groups (0.19%) 

Arabinose, xylose, 

fucose, galactose, 

glucose, and glucuronic 

acid, at molar ratios of 

0.46:40.3:0.54:30.8:1.36:

25.54 

gel filtration 

chromatography 

Bacillus 

enclensis AP-

4 

Deep-sea 

sediments 

Mannose, glucosamine, 

glucose, galactose, and 

xylose in a molar ratio of 

1.00: 0.09: 0.04: 0.09: 

0.07 

Treatment with TCA 

followed by 

centrifugation to 

remove protein, 

precipitation by three 

volumes of pre-

cooling ethanol, 

centrifugation, 

dialyzing, freeze-

drying, purification 

using column 

chromatography  

4.23g/L 

Phenol sulfuric acid 

method, UV-VIS, 

HPLC, FTIR, 

NMR, SEM, XPS 

[161] 

Aspergillus 

sp. DHE6 
Soil  ND 

Treatment with TCA 

to remove protein, 

neutralization, 

precipitation by 4 

volumes of chilled 

absolute ethanol, 

centrifugation, 

dialyzing towards 

distilled water, 

drying at 60 ◦C 

7.20g/L 

Phenol-sulfuric 

colorimetric 

method, FT-IR 

[162] 

Lactobacillus 

plantarum 

JLAU103 

Hurood (in 

Inner 

Mongolia of 

China) 

EPS103: 

Carbohydrate (90.16%) 

Sulfuric ester (1.08%) 

Arabinose, rhamnose, 

fucose, xylose, mannose, 

fructose, galactose, and 

glucose in a molar ratio 

Extraction and 

purification by ion-

exchange 

chromatography, 

further purification 

using gel filtration 

chromatography 

0.07g/L 

Phenol-sulfuric 

acid method, 

Dische method, 

HPSEC, UV-vis, 

GC-MS, FT-IR, 

NMR, SEM, AFM 

[163] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

of 4.05: 6.04: 6.29: 5.22: 

1.47: 5.21: 2.24: 1.83 

Lactobacillus 

pentosus 

14FE, 

Lactobacillus 

plantarum 

47FE, and 

Lactobacillus 

pentosus 

68FE 

Egyptian 

cheese 

products 

EPSs: 

Carbohydrates (81.38–

85.19%) 

Treatment with TCA 

to remove protein, 

precipitation by four-

volume of ethanol, 

dialyzing against 

distilled water 

4.15–

11.86g/L 

Phenol sulfuric acid 

method, FT-IR, 1H 

NMR, paper 

chromatography 

[121] 

Streptococcus 

thermophilus 

ZJUIDS-2-01 

Traditional 

yak yogurt  

EPS-3: 

Glucose, galactose, N-

acetyl-D-galactosamine, 

and rhamnose in a ratio 

of 5.2:2.5:6.4:1.0 

Treatment with TCA 

followed by 

centrifugation to 

remove protein, 

precipitation by four 

volumes of cold 

ethanol, 

centrifugation, 

dialyzing, 

lyophilizing, 

purification using 

anion-exchange 

chromatography and 

gel filtration 

chromatography 

0.48g/L 

Phenol-sulfuric 

acid assay, UV-Vis, 

HPGPC, HPAE-

PAD, FT-IR, GC–

MS, NMR, DSC 

[164] 

Lactobacillus 

plantarum 

C70 

Camel milk 

EPS-C70: 

Arabinose (13.3%), 

mannose (7.1%), glucose 

(74.6%) and galactose 

(5.0%) were the major 

monosaccharides 

constituents with molar 

ratio (2.7:1.4:15.1:1.0) 

Extraction, 

purification, 

lyophilization, 

dialyzing, freeze-

drying 

ND 

UV-Vis, GPC, GC-

FID, FTIR, NMR, 

DSC, SEM 

[165] 

Pediococcus 

acidilactici 

MT41-11 

Camel milk 

Crude EPS: 

Carbohydrates (73.33%) 

EPS-1: 

Carbohydrates (94.61%) 

Mannose, rhamnose, 

glucuronic acid, glucose, 

galactose, xylose, 

arabinose, and fucose 

with a molar ratio of 

Treatment with TCA 

followed by 

centrifugation to 

remove protein, 

ethanol precipitation, 

centrifugation, 

dialyzing followed 

by lyophilization, 

partial purification 

using anion-

exchange 

0.50g/L 

Phenol‑sulfuric 

acid method, GPC, 

PMP-HPLC, FT-

IR, NMR, SEM 

[139] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

(52.82:0.15:1.02:1.26:0.

29:0.03:0.95:1.83) 

EPS-2: 

Carbohydrates (84.82%) 

Mannose, rhamnose, 

glucuronic acid, glucose, 

galactose, xylose, 

arabinose, and fucose 

with a molar ratio of 

(2.58:1.17:1.27:53.52:1.

49:0.30:0.15:9.39) 

chromatography and 

gel filtration 

chromatography 

Leuconostoc 

mesenteroide

s SN-8 

Dajiang 

(traditional 

fermented 

food in 

northeast 

China) 

SN-8 EPS: 

Glucan and mannose 

Centrifugation, cold 

ethanol precipitation, 

savage 

deproteinization, 

dialysis, and 

lyophilization 

2.42g/L 
HPLC, FT-IR, 

SEM, DSC, TGA 
[166] 

Lactobacillus 

plantarum 

S123 

Traditional 

Chinese 

cheese 

ND 

Treatment with TCA 

followed by 

centrifugation to 

remove protein, 

precipitation 

by pre-chilled 

ethanol, 

centrifugation, 

dialysis, and 

lyophilization 

0.75g/L 

Phenol sulfuric 

acid method, FTIR, 
1H and 13C NMR, 

XRD, SEM 

[167] 

Bacillus 

aerophilus 

rk1 

Soil  ND 

Precipitation by 

double volumes of 

chilled acetone, 

centrifugation, 

dialysis, freeze-

drying, purification 

by anion exchange 

chromatography 

3.73g/L 

Phenol–sulfuric 

acid 

Method, UV–Vis, 

FT-IR, NMR, 

SEM, EDX 

[104] 

Leuconostoc 

mesenteroide

s 

Sourdough Levan type EPS 

Ethanol 

precipitation, TCA 

precipitation, dialysis 

to remove the 

proteins, and 

lyophilization 

13.20g/L 

HPLC, NMR, 

FTIR, SEM, AFM, 

TGA, DTG, DSC 

[132] 

Pediococcus 

pentosaceus 

M41 

Marine 

source (low 

water 

EPS-M41: 

Arabinose (6.2%), 

mannose (9.5%), glucose 

Precipitation by 

double volumes 

chilled absolute 

 

UV–vis, GPC, GC-

FID, FTIR, NMR, 

DSC, SEM 

[168] 
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Microbial 

strains 
Source EPS 

Extraction and 

purification 

methods 

Quantity 

Quantification 

and Identification 

methods 

Ref. 

activity 

dried fish) 

(79.0%) and galactose 

(5.2%) with a molar ratio 

of (1.2:1.8:15.1:1.0) 

ethanol, 

centrifugation, 

treatment with TCA 

to remove protein, 

dialysis against 

distilled-deionized 

water, freeze-drying 

Rhodotorula 

mucilaginosa 

sp. GUMS16 

Fallen leaf 

debris of 

Deylaman 

jungle 

Carbohydrate (61.7%) 

Glucose (85%) and 

mannose (15%) with a 

molar ratio of 5.7:1 

Ethanol 

precipitation, 

centrifugation, 

lyophilization 

28.50g/L 

Phenol sulfuric acid 

method, FT-IR, FE-

SEM, SEC-HPLC, 

GC–MS, GC-EI-

MS, NMR 

[169] 

Lactobacillus 

plantarum 

HY 

Home-made 

Sichuan 

Pickle 

HY EPS: 

Mannose, galactose, 

glucuronic acid and 

glucose in a mass 

percentage of 72.99%, 

17.27%, 6.99% and 

2.75% 

Treatment with TCA 

followed by 

centrifugation to 

remove protein, 

precipitation by three 

volumes of pre-

chilled ethanol, 

centrifugation, 

dialysis, 

lyophilization, 

purification by anion 

exchange 

chromatography, 

further purification 

by gel filtration 

1.42g/L 

Phenol sulfuric acid 

method, GPC, 

HPLC, FT-IR, 

NMR, SEM, AFM, 

TGA, DSC 

[170] 

Bacillus 

megaterium 

PFY-147 

Hiqiher 

vineyard soil  

Levan type EPS: 

Carbohydrate (90.37%), 

uronic acid (7.24%) and 

sulfated group (2.39%)  

 

Protein precipitation 

by TCA and three 

volumes of pre-

cooled ethanol, 

centrifugation, 

dialysis, 

lyophilization, 

purification by gel-

filtration 

chromatography 

4.82g/L 

FT-IR, NMR, 

SEM, AFM, TGA, 

DSC 

[110] 

GPC : Gel Permeation Chromatography, FTIR : Fourier-Transform Infrared, NMR : Nuclear Magnetic 

Resonance, TGA : Thermogravimetric Analysis, DTG : Derived Thermogravimetric, XRD : X-Ray Diffraction, 

HPGFC : High Performance Gel Filtration Chromatography, SEM : Scanning Electron Microscopy, AFM : 

Atomic Force Microscopy, HPLC : High-Performance Liquid Chromatography, GC–MS : Gas 

Chromatography coupled with Mass Spectrometry Detector, HPSEC: High Pressure Size Exclusion 

Chromatography, HPAEC-PAD : High-Performance Anion-Exchange Chromatography With Pulsed 

Amperometric Detection, SEC-HPLC : Size Exclusion-High-Performance Liquid Chromatography, HPSEC-

MALLS-RI : High-Performance Size Exclusion Chromatography-Multi-Angle Laser Light Scattering-

Refractive Index Detector, DSC : Differential Scanning Calorimeter, HPIC : High Pressure Ion 

Chromatography, XPS : X-Ray Photoelectron Spectroscopy, HPGPC : High Performance Gel Permeation 
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Chromatography, GC-FID : Gas Chromatography-Flame Ionization Detection, PMP-HPLC : 1-Phenyl-3-

Methyl-5-Pyrazolone High Performance Liquid Chromatography, FE-SEM : Field Emission Scanning Electron 

Microscopes, GC-EI-MS : Gas Chromatography-Electron Ionization-Mass Spectrometry. 

4. Functional Properties 

4.1. Anti-oxidant Activities 

Oxidative stress can be defined as a phenomenon caused by an imbalance between 

the production of free radicals such as reactive oxygen species (ROS) and the ability of the 

antioxidant defences of a biological system to scavenge these reactive products[171]. ROS are 

normally generated during oxygen metabolism[172]. However, environmental stressors and 

xenobiotics lead to a significant increase in ROS production[171]. Harmful effects caused by 

oxidative stress on important biological molecules like nucleic acids, proteins, and lipids are 

linked to several disease, including diabetes, cancer, metabolic disorders, and cardiovascular 

diseases[173,174]. As synthetic antioxidants have been known to pose safety risks, considerable 

attention has been given to exploring the potential antioxidant ability of natural 

molecules[175]. Recently, EPS showed the capacity to inhibit the activity of free radicals, thus 

providing a notable antioxidant activity[176]. 

The antioxidant activities of bacterial EPS (Table 2) have mainly been investigated 

using in vitro techniques, including reducing power analysis, lipid peroxidation inhibition 

capacity, 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical cation, 

hydroxyl (•OH) radical, superoxide anion (O2-) radical, and hydroxyl and 2,2-diphenyl-1-

picrylhydrazyl (DPPH) radical scavenging assays. 

Table 2. Exopolysaccharides antioxidant activity. 

Strain Antioxidant assay EPS concentration Results Ref. 

Bacillus thuringiensis  

DPPH radicals 

5mg/ml 

31.34% 

[124] 

Hydroxyl radicals 32.43% 

Superoxide anions 34.31% 

ABTS radicals 48.53% 

Bacillus circulans DPPH 1000μg/ml 97% [142] 

Bacillus subtilis F9 

DPPH  

800μg/ml 

81.46% 

[175] Hydroxyl radicals 66.34% 

Superoxide radicals 78.03% 
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Strain Antioxidant assay EPS concentration Results Ref. 

Lactobacillus plantarum 

MTCC 9510 
Reducing power  0.05–1mg/ml 3 (in terms of absorbance) [177] 

Streptomyces hirsutus 

NRC2018 

DPPH 100–1500μg/ml IC50 = 158.5 μg/ml 

[146] 

Hydrogen peroxide 1500μg/ml 

75.6% 

IC50 = 501.2 μg/ml 

Lactobacillus Strains DPPH ND 32.29% to 73.36% [147] 

Bacillus thuringiensis 

DPPH 

1mg/ml 

79% 
[149] 

Superoxide radical 75.12% 

Leuconostoc 

mesenteroides 
ABTS 20mg/ml 24% [152] 

Kocuria sp. DPPH 2000μg/ml 98% [136] 

Weissella cibaria 

DPPH  

1mg/ml 

34% 
[153] 

ABTS 90% 

Streptococcus 

thermophilus 

DPPH 

5mg/ml 

31.36% 

[154] 

ABTS 66.24% 

Lactobacillus bulgaricus 

DPPH 36.69% 

ABTS 82.52% 

Lactobacillus curvatus 

SJTUF 62116 

DPPH 84.50% 
[140] 

ABTS 92.53% 

Rhodotorula 

mucilaginosa sp. 

GUMS16 

DPPH 1500μg/ml up to 58% [178] 

Lactiplantibacillus 

plantarum RO30 

DPPH 5mg/ml 43.60% 

[155] 

Reducing power 

10mg/ml 

 

1.108 (in terms of 

absorbance) 

Pediococcus pentosaceus 

E8 

DPPH 50.62% 

[130] ABTS 52.17% 

Hydroxyl radical 58.91% 
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Strain Antioxidant assay EPS concentration Results Ref. 

Bacillus albus DM-15 

DPPH 

3mg/ml 

 

59.91% 

[133] ABTS 64.24% 

Nitric oxide radical 63.78% 

Bacillus subtilis LR-1 DPPH 

10mg/ml 

80% and 56% [105] 

Lactiplantibacillus 

pentosus B8 (EPS: 

LPB8-0) 

DPPH 50.62% 

[109] 

ABTS 47.17% 

Hydroxyl radical 47.91% 

Lactiplantibacillus 

pentosus B8 (EPS: 

LPB8-1) 

DPPH 62.82% 

ABTS 58.36% 

Hydroxyl radical 72.52% 

Lactiplantibacillus 

plantarum 
DPPH 4mg/ml 33.60% [179] 

Bacillus cereus 

DPPH 

1500μg/ml 

90.40% 

IC50 = 500 μg/ml 
[137] 

Hydrogen peroxide 

radical 

75.10% 

IC50 = 1500 μg/ml 

Bacillus subtilis 

DPPH 

97.60% 

IC50 = 300 μg/ml 
[156] 

Hydrogen peroxide 

radical 

64.80% 

IC50 = 1500 μg/ml 

Bacillus haynesii CamB6 

DPPH 

5mg/ml 

72.30% 

[128] 
Hydrogen peroxide 

radical 
76.21%  

ABTS 72.80% 

Weissella confusa 

KR780676 

DPPH 500μg/ml 

60% 

IC50 = 450 μg/ml [157] 

Nitric oxide radical 200μg/ml Almost 80% 
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Strain Antioxidant assay EPS concentration Results Ref. 

IC50 = 138 μg/ml 

Hydroxyl radicals 1 mg/ml 41.93% 

Lacticaseibacillus 

paracasei Subsp. 

paracasei 

SS-01 

DPPH 

10mg/ml 

73.84% 

IC50 = 1.314 mg/ml 

[158] Hydroxyl radicals 

88.80% 

IC50 = 2.369 mg/ml 

ABTS 

90.46% 

IC50 = 0.449 mg/ml 

Bacillus xiamenensis 

RT6 

DPPH 0.1–10mg/ml 
Around 65% for all of the 

concentrations 

[129] 

Hydroxyl radicals 2.5mg/ml 100% 

Superoxide anions 10mg/ml 39.40% 

Saccharomyces 

cerevisiae Y3 

DPPH 

4mg/ml 

35%  

[127] 
Hydroxyl radicals 35.71% 

Scavenging activity of 

Nitroso (NO2− ) 
17.85% 

Leuconostoc 

mesenteroides SL 

DPPH 

5mg/ml 

52.70% 

[159] 

ABTS 60.80% 

Reducing power 
1.08 (in terms of 

absorbance) 

Enterococcus viikkiensis 

N5 

DPPH 64.90% 

ABTS 75.20% 

Reducing power 
1.26 (in terms of 

absorbance) 

Rhizopus nigricans 

DPPH 20.55% 

[160] ABTS 12.09% 

Hydroxyl radicals 13.76% 

DPPH 4mg/ml 46.23% [134] 
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Strain Antioxidant assay EPS concentration Results Ref. 

Lactobacillus kunkeei 

AK1 
ABTS 8mg/ml 91.60% 

Tetragenococcus 

halophilus (EPS-1) 

DPPH 

10mg/ml 

22.61% 

[120] 

Hydroxyl radicals 20.11% 

ABTS Around 20%  

Tetragenococcus 

halophilus (EPS-2) 

DPPH 56.03% 

Hydroxyl radicals 37.72% 

ABTS Around 40% 

Tetragenococcus 

halophilus SNTH-8 

(THPS-1) 

DPPH 

12mg/ml 

63.53% 

[108] 

Hydroxyl radicals 50.19% 

ABTS 44.19% 

Reducing power 
1.62 (in terms of 

absorbance) 

Tetragenococcus 

halophilus SNTH-8 

(THPS-2) 

DPPH 68.81% 

Hydroxyl radicals 63.24% 

ABTS 59.24% 

Reducing power 
1.86 (in terms of 

absorbance) 

Bacillus enclensis AP-4 

DPPH 

5mg/ml 

83.1% 

[161] 

ABTS 80.3% 

Hydroxyl radicals 74.6% 

Superoxide anion 

radical 
87.5% 

Aspergillus sp. DHE6 DPPH 600μg/ml 

52.3% 

IC50 = 573.6 μg/ml 

[162] 

Lactobacillus plantarum 

JLAU103 

Hydroxyl radicals 

10mg/ml 

80.40% 

[163] ABTS 65.50% 

DPPH 60.50% 
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Strain Antioxidant assay EPS concentration Results Ref. 

Lactobacillus pentosus 

14FE, Lactobacillus 

plantarum 

47FE, and Lactobacillus 

pentosus 68FE 

DPPH 54.50–68.90% [121] 

Streptococcus 

thermophilus ZJUIDS-2-

01 

DPPH 34.5% [164] 

Lactobacillus plantarum 

C70 

DPPH 

10mg/ml 

75.91% 
[165] 

ABTS 49.42% 

Enterococcus durans 

K48 
DPPH 

25mg/ml 

 

53% 

[180] 
Enterococcus faecium 

R114 
DPPH 58% 

Enterococcus faecium 

T52 
DPPH 64% 

Lactococcus garvieae 

C47 

DPPH 

10mg/ml 

67.52% 
[181] 

ABTS 61.06% 

Pediococcus acidilactici 

MT41-11 
DPPH 3mg/ml 

Up to 71.65% 

IC50 = 0.53 mg/ml 

[139] 

Lactobacillus 

acidophilus LA5 

DPPH 

2mg/ml 

59.30% 

[182] 

Hydroxyl radicals 59.94% 

Reducing power 1.047% 

Bifidobacterium animalis 

subsp. lactis BB12 

DPPH 56.76% 

Hydroxyl radicals 46.40% 

Reducing power 1.270% 

Leuconostoc 

mesenteroides SN-8 

Hydroxyl radicals 1mg/ml 17.76% 

[166] DPPH 5mg/ml 40% 

ABTS 10mg/ml 65% 
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Strain Antioxidant assay EPS concentration Results Ref. 

Lactobacillus plantarum 

S123 
DPPH 100μg/ml More than 65% [167] 

Bacillus aerophilus rk1 

DPPH 

4mg/ml 

56.60% 
[104] 

Hydrogen peroxide 67.50% 

Leuconostoc 

mesenteroides 
Hydroxyl radicals 6mg/ml 

100% 

EC50 = 1.7mg/ml 

[132] 

Pediococcus pentosaceus 

M41 

DPPH 

10mg/ml 

76.50% 
[168] 

ABTS 48.90% 

Rhodotorula 

mucilaginosa sp. 

GUMS16 

DPPH 

7.5mg/ml 

28.70% 

[169] 

Hydroxyl radicals 48.20% 

Bacillus sp. NRC5 

DPPH 500μg/ml 

100% 

IC50 = 31μg/ml 

[183] 

ABTS  IC50 = 431.88μg/ml 

Superoxide anion 

radicals 
 IC50 = 315.51μg/ml 

Hydroxyl radicals  IC50 = 35.35μg/ml 

Nitric oxide radical 1000μg/ml 

98.11% 

IC50 = 14.65μg/ml 

Lipid peroxidation 50–1000μg/ml 

45.45% to 85.63% 

IC50 = 71.10μg/ml 

Lactobacillus plantarum 

HY 
DPPH 10mg/ml 

92.27% 

IC50 = 1.41mg/ml 

[170] 

Bacillus megaterium 

PFY-147 

DPPH 

5mg/ml 

94.78% 

[110] 

Superoxide anion 

radical 
87.12% 

Hydroxyl radical 79.29% 

ABTS 96.12% 
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EPS extracted from Bacillus subtilis, isolated from marine, was reported to have 

97.60% DPPH scavenging activity at 1.5 mg/ml concentration, with an IC50 value of 

300µg/ml[156]. This value was found to be higher compared to the EPS secreted by B. subtilis, 

which reached 80% toward DPPH at the concentration of 10mg/ml[105]. However, EPS 

isolated from Bacillus sp. showed a higher scavenging capacity toward DPPH (100%) at 300 

µg/ml with an IC50 value of 31µg/ml[183]. 

Ramamoorthy et al.[149] evaluated the antioxidant activity of EPS from Bacillus 

thuringiensis RSK CAS4.  The results regarding DPPH radical scavenging of the EPS 

showed a maximum activity of 79% with the concentration of 1 mg/ml of EPS. This value 

was higher than that observed for the EPS extracted from B. thuringiensis, which exhibited 

31.34% DPPH antioxidant ability at a concentration of 5mg/ml[124]. 

At a concentration of 5mg/ml, the EPS from Bacillus megaterium had higher 

antioxidant activity for the DPPH compared to the EPS isolated from Bacillus enclensis with 

94.78% and 83.1%, respectively. Similarly, the EPS extracted from B. megaterium exhibited 

a higher ABTS scavenging activity of 96.12% compared to the exopolysaccharide derived 

from B. enclensis, which had a scavenging activity of 80.3% against ABTS radicals. 

However, the EPS from B. enclensis had higher activity against hydroxyl radicals, although 

the difference is relatively small. Meanwhile, the superoxide anion radical scavenging 

activities of both exopolysaccharides were similar[110,161]. 

Exopolysaccharides isolated from Lactobacillus plantarum have antioxidant 

potential, but their activity can vary depending on the strain. At the same concentration of 10 

mg/ml, Liu et al.[170] showed that EPS from Lactobacillus plantarum HY exhibited very high 

activity against DPPH radicals (92.27%). Min et al.[163] reported that EPS isolated from 

Lactobacillus plantarum JLAU103 had moderate antioxidant activity, with DPPH and ABTS 

values of 60.50% and 65.50%, respectively, and a relatively high hydroxyl radical scavenging 

activity value of 80.40%. Ayyash et al.[165] demonstrated that the EPS extracted from 

Lactobacillus plantarum C70 had a relatively high activity against DPPH radicals (75.91%), 

but its activity against ABTS was lower (49.42%). Furthermore, an investigation attempted 

to evaluate the antioxidant activity of EPSs from three strains Lactobacillus pentosus 68FE, 

Lactobacillus plantarum, and Lactobacillus pentosus 14FE. The results showed that EPS 

produced by L. plantarum displayed the highest antioxidant activity against DPPH radicals 

with a value of 68.90% at 10mg/ml[121]. 
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Khalil et al.[147] evaluated the antioxidant ability of exopolysaccharide-producing 

Lactobacillus strains from Tempoyak using DPPH free radical assay. The isolated 

Lactobacillus strains showed high antioxidant activity, ranging from 32.29% to 73.36%. 

On the other hand, the antioxidant activity of EPS can also be evaluated using in vivo 

studies. Glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) 

are important antioxidant enzymes in the human body that could protect the organs from 

oxidative stress by converting ROS produced in cells into non-toxic substances[184]. SOD 

functions by converting superoxide radicals to hydrogen peroxide (H2O2), effectively 

regulating superoxide concentrations at low levels[185]. CAT and GSH-Px are able to 

decompose H2O2 to form water, thereby preventing the generation of hydroxyl 

radicals[185,186]. Malondialdehyde (MDA) is a cytotoxic compound that is often used as a 

biomarker of cellular lipid peroxidation[187]. An increase in MDA levels serves as an indicator 

of tissue damage induced by oxidative stress[157,188]. Lactate dehydrogenase (LDH) is another 

indicator of cell damage that plays a significant role in the production of H2O2 and subsequent 

oxidative stress[189,190]. 

Previous research has shown that an excessive accumulation of ROS leads to an 

increase in MDA concentration and a decrease in the activity of enzymes like GSH-Px, CAT, 

and SOD[191]. Zhang et al.[187] showed that EPS (named LPC-1) from Lactobacillus 

plantarum C88 demonstrated notable defensive effects against oxidative damage in cells by 

inhibiting the production of MDA and enhancing the activities of SOD and total antioxidant 

capacities (T-AOC). These findings suggest that the EPS obtained from L. plantarum C88 

could enhance both enzymatic and non-enzymatic antioxidant activities as well as mitigate 

lipid peroxidation. It was reported that acidic exopolysaccharide (EPS-LP2) isolated from 

Lactiplantibacillus plantarum DMDL 9010 improved the enzymatic antioxidant activity, 

alleviated the reduction of antioxidant substances, and enhanced the non-enzymatic 

antioxidant system, leading to a reduction of the cell damage[150]. In the presence of EPS-

LP2, ROS, MDA, and LDH contents were reduced in a dose-dependent manner. EPS-LP2 

could also protect cells against H2O2-induced oxidative stress by improving SOD, CAT, and 

GSH-Px activities[150].  

Li et al.[192] showed that pre-treating PC12 cells with EPSs from Lactobacillus 

plantarum were able to protect against H2O2-induced oxidative damage by enhancing the 

activity of CAT, T-AOC, and SOD. In addition, the pre6incubating PC12 cells with EPS-3 

resulted in an increase of each activity by 59.05%, 65.81%, and 41.34%, respectively, in 

comparison with H2O2 group[192]. In other studies, exopolysaccharides from Lactococcus 



PMMB 2023, 6, 1; a0000384 36 of 82 

 

lactis and Lactobacillus helveticus were proven to protect hepatopancreas tissue and liver, 

respectively, against oxidative stress by increased SOD and GSH-Px activities and decreased 

MDA concentration[193,194]. Additionally, EPS from Lacticaseibacillus rhamnosus could 

reduce brain damage via increasing antioxidant capacity in a dose-dependent manner [24]. 

Recently, Yang et al.[195] reported that exopolysaccharide (LRSE1) produced by 

Lacticaseibacillus rhamnosus was able to mitigate the oxidative stress of the gastric mucosa 

of mice by reducing MDA levels. Furthermore, ROS content and the activities of GSH-Px 

and SOD in the gastric mucosal tissues significantly raised in the presence of LRSE1. 

Similarly, Chouchane et al.[196] also reported a considerable increase in GSH-Px, SOD, and 

CAT levels and a significant decrease in the content of MDA were observed after mice 

insoluble EPSs (iEPSs) administrations. Indeed, the SOD activities in the treatment group 

using EPS–1.5kGy (194UmL−1) exceeded that of the acid ascorbic (positive control) group 

(192UmL−1)[196]. 

It should be noted that the structural properties of EPS, including its chemical 

composition, molecular weight, conformation, and types of glycosidic bonds, can affect its 

bioactivity. In addition, variations in source materials and extraction methods may also alter 

the physicochemical properties of EPS, leading to different levels of antioxidant activity[197]. 

4.2. Metal Chelating 

The metals-binding capacities of EPS are thoroughly investigated and widely adopted 

in the bioremediation of heavy metals, providing an effective alternative to costly, inefficient 

and non-ecofriendly traditional techniques, such as solvent extraction, chemical 

precipitation, membrane separations, and activated carbon adsorption[198,199]. The chelating 

activity of exopolysaccharides (EPS) has gained increasing attention in recent years due to 

its potential applications in various fields, such as environmental remediation and wastewater 

treatment[200]. EPSs have been shown to exhibit chelating activity towards metal ions due to 

their carboxyl, hydroxyl, and amino functional groups, which can coordinate with metal ions 

and form stable complexes (Table 3)[201,202]. The chelating activity of EPS has been attributed 

to its net anionic composition, which allows it to bind with a wide range of positively charged 

metal ions[200]. Moreover, the chelating ability of EPS has been found to be influenced by 

factors such as pH, temperature, and the presence of other competing ligands[200]. Several 

studies have demonstrated the chelating activity of EPS. For example, Pie et al.[110] 

investigated the chelating activity of levan produced by Bacillus megaterium. The study 

found that levan exhibited strong chelating activity towards Cu2+ and Fe2+, with metal 

adsorption capacities values of 99.20% and 97.12%, respectively, and had a higher binding 
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affinity compared to other tested metal ions (Pb2+ and Zn2+). Similarly, dextran produced by 

Weissella confusa exhibited a strong binding affinity toward Cu2+ and Fe2+, while its capacity 

to adsorb Pb2+ and Cd2+ was comparatively lower[203]. In another study, Huang-Lin et al.[129] 

revealed that EPS isolated from Bacillus xiamenensis exhibited a remarkable iron chelation 

capacity (100%) of over 5mg/mL. These results are higher than those obtained with the EPS 

extracted from Lactobacillus plantarum, which showed a ferrous ion chelating ability of 

69.7% at 10mg/mL[163]. The crude EPS produced by Pseudomonas stutzeri AS22 showed an 

interesting metal-binding capacity with a maximum Pb uptake of 460mg/g[204]. EPS isolated 

from Arthrobacter ps-5 showed a high biosorption capacity, up to 216.09mg/g of Pb2+, 

169.15mg/g of Cu2+, and 84.47mg/g of Cr6+[205]. In addition, the authors evaluated the 

biosorption properties of EPS on the basis of various factors, including solution pH, ionic 

strength, and EPS concentration. Indeed, the maximum biosorption was achieved at pH 5.5 

for Pb2+, 5.0 for Cu2+, and 6.0 for Cr6+, respectively. Meanwhile, the biosorption becomes 

weak at low or high pH[205]. This can be explained by the competitive biosorption (high H3O
+ 

content) in the first case[206] and metal hydroxide formation leading to metal precipitation in 

the second[207]. Furthermore, the metal biosorption capacity of EPS decreased with increasing 

ionic strength, which may be explained by competition between salt ions in solution and 

metal ions (Pb2+, Cu2+, and Cr6+)[205]. The functional group of O-H, C-O-C, C=O, and C=O-

C have been implicated in metal biosorption, which contributed significantly to the binding 

of the metal ions by EPS[205,208]. These findings indicated that EPSs possess significant 

chelating activity towards various metal ions, making them potential candidates for the 

development of novel chelating agents. However, further research is needed to understand 

the relationship between the physicochemical properties of EPSs and their chelating activity, 

as well as their potential applications in various fields. 

Table 3. Exopolysaccharides chelating activity. 

Strain EPS concentration 
Chelating activity 

assay 
Chelating activity  Ref. 

Weissella confuse 10mg/ml 
Heavy metal chelating 

activity 

85.92% (Cu2+)   

94.71% (Fe2+)  

93.47% (Zn2+) 

71.84% (Pb2+) 

75.30% (Cd2+) 

[203] 

Pleurotus ostreatus  ND Iron-chelating activity IC50 = 5.23mg/ml [209] 
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Strain EPS concentration 
Chelating activity 

assay 
Chelating activity  Ref. 

Lactobacillus 

plantarum YW11 
3mg/ml 

Ferrous ion chelating 

ability 

41.09% [210] 

Lactic acid bacteria 

10mg/ml 

27% [211] 

Lactobacillus 

plantarum JLAU103 
69.7% [163] 

Bacillus 

amyloliquefaciens 

GSBa-1 

2mg/ml 30.5% [44] 

Lactobacillus 

acidophilus La 

10mg/ml 

75.80% 

[212] 

Bifidobacterium 

adolescentis Ba 
80% 

Rhodobacter sp. 

BT18 
100mg/l Metal chelating activity 

64% (As) 

51% (Pb) 

[213] 

Lactobacillus 

bulgaricus 
10mg/ml 

Ferrous ion chelating 

ability 

74.13% [214] 

Lactobacillus sp.Ca6 7.5mg/ml 78.66% [215] 

Lactiplantibacillus 

plantarum RO30 

5mg/ml 72.49% 
[155] 

10mg/ml 89.78% 

Lactobacillus 

rhamnosus 
4mg/ml 54–73% [216] 

Halomonas 

smyrnensis K2 
10g/l 31.1% [217] 

Halolactibacillus 

miurensis 
10mg/ml 49% [218] 

Streptomyces 

hirsutus NRC2018 

400µg/ml 94.9% 
[146] 

1000µg/ml 98.5% 

Lactobacillus 

helveticus MB2-1 
4mg/ml 31.25–40.63% [219] 

Pleurotus fabellatus 5mg/ml 
37.98% 

EC50 = 6.64mg/ml 

[220] 
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Strain EPS concentration 
Chelating activity 

assay 
Chelating activity  Ref. 

 CUPRAC EC50 = 3.48mg TE/g 

Bacillus xiamenensis 

RT6 
7.5mg/ml Iron chelating activity 100% [129] 

Lactobacillus 

helveticus MB2-1 
4mg/ml 

Ferrous chelating 

activities 
63.33–73.33% [221] 

Streptomyces 

globisporus BU2018 

400µg/ml Ferrous ion chelating 

ability 

85.2% 
[197] 

1000µg/ml 90.2% 

Bacillus cereus 

KMS3-1  
- 

Maximum adsorption 

capacity 

54.05mg/g for Cd(II) 

71.42mg/g for Cu(II) 

78.74mg/g for Pb(II) 

[222] 

Leuconostoc lactis 

KC117496 
100–500µg/ml 

Ferrous chelating 

activities 
5.8–72.5% [223] 

Bacillus megaterium 

PFY-147 
10mg/l 

Metal adsorption 

capacity 

99.20% for Cu2+ 

97.12% for Fe2+ 

92.93% for Zn2+ 

91.40% for Pb2+ 

[110] 

Pseudomonas 

stutzeri AS22 
0.75mg/ml 

Ferrous ion chelating 

ability 

88.5% [224] 

Streptomyces 

griseorubens GD5 
1mg/ml 85.8% [225] 

Lacticaseibacillus 

plantarum 70810 
4mg/ml 62.8% [226] 

Lactobacillus 

delbrueckii ssp. 

Bulgaricus SRFM-1 

4mg/ml 
62.33% 

EC50 = 1.25mg/ml 

[227] 

Weissella confusa 

AJ53 
1mg/ml 90% [228] 

Leuconostoc citreum 

1.2461 
12mg/ml 42.4% [229] 

CUPRAC: Cupric ion Reducing Antioxidant Capacity. 
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4.3. Anticancer Activity 

Cancer is a group of diseases characterized by the uncontrolled growth of abnormal 

cells. It is estimated that there are around 18.1 million new cancer cases and 9.6 million 

cancer deaths each year worldwide. Lung, colorectal, stomach, liver, and breast cancer are 

the most common types of cancer-related deaths worldwide[230]. Under the need for novel 

anticancer agents and because of their wide range of therapeutic properties, bacterial 

exopolysaccharides (EPS) are suggested as anticancer agents. Several studies have shown 

that EPS from different bacterial species can inhibit the growth and proliferation of different 

types of cancer cells in vitro (Table 4). 

Table 4. In vitro studies on the anticancer properties of bacterial exopolysaccharides. 

Bacteria  The test used Results Ref 

Bacillus circulans 

Effect of EPS on Hep 2 cell 

line  
IC50 = 45µg/ml  

[231] 

Effect of EPS on Hep G2 

cell line  
IC50 = 30µg/ml 

Lactobacillus kefiri 

MSR101 

Effect of EPS on HT-29 

cells 

 ↘↘ HT-29 survival rate to 44.1% with 

400µg/ml of EPS 

[232] 

↗↗ Cyto-c gene expression   

↗↗ BAX gene expression   

↗↗ BAD gene expression   

↗↗ caspase3 gene expression   

↗↗ caspase8 gene expression   

↗↗ caspase9 gene expression   

↘↘ BCL-2 gene expression   

P. aeruginosa A 
Effect of EPS on HT-29 

cells 

IC50 = 44.8μg/ml  

[233] 

P. aeruginosa B IC50 = 12.7μg/ml  

Streptomyces sp. A5 

Effect on 4T1 cells  ↗↗ cytotoxicity to 96.2 ± 13.5% 
[234] 

Effect on Caco-2 cells ↗↗ cytotoxicity to 73.9 ± 6.4% 
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Bacteria  The test used Results Ref 

Effect on IEC-18 cells  ↗↗ cytotoxicity to 29.9 ± 9.1% 

Streptomyces sp. M7 

Effect on 4T1 cells ↗↗ cytotoxicity to 59.8 ± 1.5% 

Effect on Caco-2 cells ↗↗ cytotoxicity to 73.3 ± 3.2% 

Effect on IEC-18 cells ↗↗ cytotoxicity to 98.7 ± 5.7% 

Streptomyces sp. A14 

 

Effect on 4T1 cells ↗↗ cytotoxicity to 84.5 ± 3.2%  

Effect on Caco-2 cells ↗↗ cytotoxicity to 60.4 ± 1.9% 

Effect on IEC-18 cells ↗↗ cytotoxicity to 84.5 ± 5.9% 

Streptomyces sp. MC1 

Effect on 4T1 cells ↗↗ cytotoxicity to 76.1 ± 3.8% 

Effect on Caco-2 cells ↗↗ cytotoxicity to 93.9 ± 1.9% 

Effect on IEC-18 cells ↗↗ cytotoxicity to 96.9 ± 3.1% 

Streptomyces hirsutus 

NRC2018 
Effect on Caco-2 cells IC50 = 295.1µg/ml [235] 

Lactobacillus 

acidophilus (DSM20079) 

Effect on Hep GII cells line ↗↗ apoptotic cells to 53.4%  

[236] Effect on MCF-7 cells line ↗↗ apoptotic cells to 62.0% 

Effect on Caco-2 cells line ↗↗ apoptotic cells to 54.3%   

Lactobacillus fermentum 

YL-11 
Effect on HT-29 cells 

↗↗ apoptotic cells to 34% with 

600μg/mL of EPS 

[237] 

Rhodococcus 

erythropolis HX-2 

Effect on A549 cell line 
↘↘ A549 cell Viability to 21.86% at 

800μg/ml 

[238] 
Effect on SMMC-7721 cell 

line 

↘↘ SMMC-7721 cell Viability to 

31.24% at 800μg/ml 

Effect on Hela cell line 
↘↘ Hela cell Viability 37.65% at 

800μg/ml 

Bacillus thuringiensis 

RSK CAS4 

Effect on Hep-2 cell line IC50 = 320μg/ml  
[239] 

Effect on A549 cell line IC50 = 115μg/ml  

Bacillus subtilis AG4 

Effect on T-24 cell line IC50 = 244µg/ml 
[240] 

Effect on A-549 cell line  IC50 = 148µg/ml 
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Bacteria  The test used Results Ref 

Effect on HepG-2 cell line  IC50 = 123µg/ml 

Lactococcus garvieae 

C47 

Effect on Caco-2 cell line 
Cytotoxicity of 59.35% at 10mg/ml of 

EPS 
[241] 

Effect on MCF-7 cell line 
Cytotoxicity of 42.82% at 10mg/ml of 

EPS 

Pediococcus pentosaceus 

M41 

Effect on Caco-2 cell line Cytotoxicity of 77.89 at 5mg/ml of EPS 
[242] 

Effect on MCF-7 cell line Cytotoxicity of 46.43 at 5mg/ml of EPS 

Bacillus velezensis SN-1  Effect on HepG-2 cell line 
Cell inhibition ratio of 81.33% with 

2mg/l of EPS 

[243] 

Bacillus cereus AG 3 

Effect on T-24 cell line IC50 = 121 ± 4.1µg/ml 

[244] Effect on MCF-7 cell line IC50 = 55.7 ± 2.3µg/ml 

Effect on PC-3 cell line IC50 = 61.4 ± 2.6µg/ml 

Lactobacillus plantarum 

S123 
HT-29 cancer cells 

the growth inhibition rates (52.4–

12.1%) with (0–600µg/ ml) of EPS 

[245] 

Bacillus albus DM-15 lung cancer cell line (A549 IC50 value of 20 ± 0.97 −1µg mL [246] 

Exopolysaccharides isolated from four Streptomyces sp. had excellent anti-cancer 

activity against Caco-2 human colon cancer cells, IEC-18 intestinal cancer cells, and 4T1 

breast cancer cells. EPS from Streptomyces sp. MC1 strain showed the highest cytotoxicity 

against Caco-2 cells (93.9 ± 1.9%) while EPS from Streptomyces sp. M7 strain displayed the 

highest cytotoxicity against ISC-18 cells (98.7 ± 5.7%) and the EPS from Streptomyces sp. 

A5 strain has the highest cytotoxicity against 4T1 cells (96.2 ± 13.5 %)[234]. Awady et al.[235] 

investigated the anti-cancer effect of EPS isolated from another species of Streptomyces 

genre, Streptomyces hirsutus NRC2018. The tested EPS also showed high cytotoxicity 

against Caco-2 cells with an IC50 of 295.1 µg/ml. EPS from Lactobacillus kefiri MSR101 

exhibited high anti-cancer activity against HT-29 colon cancer cells by reducing cells’ 

survival rate to 44.1% with a concentration of 400µg/ml of EPS. This effect is due to the 

modulation of apoptosis pathways by increasing the expression levels of the pro-apoptotic 

genes Bax and Bad, promoting Cyt-c gene expression which have a crucial role in the 

activation of intrinsic apoptotic pathways, notably Caspase-3 and Caspase-9. This isolated 

EPS is also involved in the activation of the extrinsic pathways by the up-regulation of 

caspase 8 gene expression, in addition to the down-regulation of BCL-2 gene expression, 
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which is an anti-apoptotic protein that prevents programmed cell death[232]. The EPS isolated 

from P. aeruginosa A and B strains significantly inhibited HT-29 colon cancer cells with 

IC50 of 44.8 and 12.7μg/ml, respectively. 

The authors suggested that the anti-cancer activity of the isolated EPS is due to the 

presence of carbohydrates[233]. EPS from YL-11 can significantly suppress HT-29 colon 

cancer growth with an apoptotic cell rate of 34% with 600μg/ml of EPS[237]. The potential 

effect of EPS isolated from Rhodococcus erythropolis HX-2 on A549 lung cancer cells, 

SMMC-7721 liver cancer cells, and Hela col uterus cancer cells was also reported in the 

literature. For instance, the EPS produced by Rhodococcus erythropolis HX-2 significantly 

decreased the cancer cells’ viability to 21.86%, 31.24%, and 37.65% with a concentration of 

800μg/ml, respectively[238]. The EPS from Bacillus thuringiensis RSK CAS4 can 

significantly inhibit the proliferation of Hep-2 liver cancer cells and A549 lung cancer cells 

with IC50 of 320 and 115μg/ml, respectively[239]. In Abdel-Wahab et al.[240] study, they tested 

the anti-cancer effect of EPS isolated from Bacillus subtilis AG4 on three cancer cell lines, 

T-24 bladder carcinoma, A-549 lung cancer, and HepG-2 hepatocellular carcinoma. The EPS 

showed a high proliferation inhibitory activity with IC50 of 244, 148, and 123 µg/ml, 

respectively which is higher than the results showed by Bacillus velezensis SN-1 EPS against 

HepG-2 cell line (Cell inhibition ratio of 81.33% with 2 mg/l of EPS)[243]. The EPS isolated 

from Bacillus cereus showed high cytotoxicity against Caco-2 colon cancer cells, MCF-7 

breast cancer cells, and PC-3 prostate cancer cells with IC50 of 121 ± 4.1, 55.7 ± 2.3, and 61.4 

± 2.6µg/ml, respectively[244]. In the study of [241], Lactococcus garvieae C47 EPS showed low 

antitumor activity against colon and breast (MCF-7) carcinoma cell lines compared with the 

cytotoxicity shown by the EPS isolated from Pediococcus pentosaceus M41, with 

cytotoxicity percentages of 59.35 and 42.82% with 10mg/ml of EPS vs 77.89 and 46.43% 

only with 5 mg/ml of EPS, respectively[241]. 

Emam et al.[236] investigated the potential effect of EPS isolated from Lactobacillus 

acidophilus (DSM20079) against the MCF-7 breast cell line, CaCo-2 colon cancer cell line, 

and HepG II liver cancer cell line. The tested EPS showed a dose-dependent effect with a 

high apoptotic rate of 53.4, 62.0, and 54.3%. This effect is related to the G1/S phase transition 

blockage. The Lactobacillus acidophilus EPS can moderate cancer proliferation underlying 

mechanisms by the up-regulation of the apoptotic agent’s expression notably protein 53 

(P53), the apoptosis-induced factor M1 (AIFM1), the retinoblastoma susceptibility gene 

(Rb1), Caspase-9, and Bax expressions. In addition, the isolated EPS can down-regulate the 

expression of anti-apoptotic genes like Bcl2 expression and autophagic genes like the 

mammalian target of rapamycin (mTOR) and Microtubule-associated protein (LC3A). 
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Lactobacillus acidophilus EPS also acted by decreasing the proliferative gene expression 

notably the nuclear protein KI-67 gene, proto-oncogenes c-myc, and KRas, and by the 

decrease of β-catenin expression in addition to the suppression of miR-155 expression.  

4.4. Anti-inflammatory Activity 

Several studies have demonstrated the anti-inflammatory potential of 

exopolysaccharides. Table 5 summarized some studies underlying the anti-inflammatory 

potential of EPS. Gao et al.[247] tested the anti-inflammatory effect of EPS extracted from B. 

thuringiensis on Macrophages stimulated with LPS. As known, LPS stimulates the 

inflammatory response by inducing the activation of toll-like receptor 4 (TLR4), causing 

downstream signaling pathways activation and leading to the activation of several 

transcription factors, including nuclear factor-kappa. The activation of NF-kB induces the 

transcription of pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-

6), and tumor necrosis factor- α (TNF-α)[248]. The treatment with EPS significantly inhibits 

the NO production and decreases the pro-inflammatory cytokine levels notably IL-1β, IL-6, 

and TNF-α. EPS isolated from Lactobacillus reuteri also showed a significant suppression 

of TNF-α overexpression induced by LPS in macrophages[249]. Following the same approach, 

Giri et al.[250] investigated the anti-inflammatory potential of Bacillus subtilis F9 EPS. The 

isolated EPS demonstrated high activity by decreasing the pro-inflammatory cytokines TNF-

α and IL-1β concentrations and increasing the anti-inflammatory agents IL-10 and TGF-β. 

Table 5. In vitro and in vivo studies on the anti-inflammatory properties of bacterial exopolysaccharides. 

Bacteria  The test used Key results Ref.  

B. thuringiensis 

Effect on LPS 

Stimulated 

macrophages 

↘↘ NO levels to 3.91 ± 1.03μmol/l vs 

24.19 ± 1.65μmol/l 

[247] 

↘↘ IL-1β levels to 273.80 ± 12.67pg/ml 

vs 341.92 ± 7.50pg/ml 

↘↘ IL-6 levels to 57.21 ± 0.72pg/ml vs 

87.38 ± 0.45pg/ml 

↘↘ TNF-α levels to 159.58 ± 5.00pg/ml 

vs 232.08 ± 2.50pg/ml 

Lactobacillus 

reuteri 

Effect on LPS 

Stimulated 

macrophages 

↘↘ TNF-α levels to 209.20 ± 84.34pg/µg 

DNA with 1 ppm of EPS 
[249] 
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Bacillus subtilis F9 

Effect on LPS 

Stimulated 

macrophages 

Suppression of the overexpression of 

TNF-α and IL-1β in a concentration-

dependent manner [247] 

↗↗ the expression level of IL-10 and 

TGF-β  

Bacillus cereus 

EPS incubation with 

Lipoxygenase (LOX) 
IC50 = 12.9 ± 1.3µg/ml 

[244] 

EPS incubation with 

Cyclooxygenase 

(COX-2)  

IC50 = 29.6 ± 0.89µg/ml 

Membrane 

Stabilization 

inhibition 

IC50 = 35.4 ± 0.67µg/ml 

Bacillus circulans 

Effect on albumin 

denaturation 

93% protection against albumin 

denaturation at 1000µg/ml. 

[231] Effect on proteinase 
71% inhibition of proteinase activity at 

1000µg/ml 

Effect on Red Blood 

Cell lysis 

 84% inhibition of heat-induced lysis of 

RBC at 1000µg/ml 

Lactococcus lactis 

subsp. cremoris 

Effect on dermatitis 

mouse model 

induced by repeated 

exposure to TNCB 

Suppression of skin thickening and mast 

cell infiltration in skin lesions. 

[251] 

Suppression of the overexpression of IL-

4, IFN-c, IL-6, and TNF-α levels by 0.5 

mg/kg of EPS 

Lactobacillus sp. 

Ca6 

Excision wound 

model in rats 

Wound healing activity acceleration after 

treatment with EPS ointment at 15mg/ml  
[252] 

In addition to LPS, multiple in vitro assays are used, mainly the inhibition of 

cyclooxygenase and lipoxygenase enzymes, inhibition of hemolysis, inhibition of albumin 

denaturation, and proteinase inhibition. EPS from Bacillus cereus can significantly inhibit 

the lipoxygenase and cyclooxygenase enzymes with IC50 of 12.9 ± 1.3 and 29.6 ± 0.89µg 

/ml, respectively, in addition to the inhibition of hemolysis with an IC50 of 35.4 ± 

0.67µg/ml[244]. EPS from Bacillus circulans demonstrated a high inhibition of albumin 

denaturation, proteinase, and hemolysis with 1000µg/ml[231]. 
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To investigate the anti-inflammatory effect of EPS extracted from Lactococcus lactis 

subsp. cremoris, dermatitis was induced in BALB/c mice by repeated exposure to 2,4,6-

trinitro-1-chlorobenzene (TNCB). The oral administration of EPS with a concentration of 

0.05mg/kg or 0.5mg/kg decreased dermatitis severity in mice. The treatment showed a high 

suppression of skin thickening and mast cell infiltration in skin lesions. At the molecular axis, 

the EPS can significantly suppress the overexpression of IL-4, IFN-c, IL-6, and TNF-α levels 

[251]. Wound healing is the final phase of the inflammatory response characterized by 

damaged tissue reparation. These processes can be affected by various factors inducing 

multiple abnormalities. Trabelsi et al.[252] tested the therapeutic effect of Lactobacillus sp. 

Ca6 EPS on excision wound model in rats. The treatment with ointment formulated by EPS 

at a concentration of 15mg/ml optimized wound-healing process. 

4.5. Immuno-modulatory Activity 

In order to determine the possible future uses of non-dietary polysaccharides, their 

activities toward the immune system must be investigated in detail, as they could be 

potentially toxic, cause inflammation or magnify an ongoing inflammatory response. The 

expression of some biomarkers such as pro-inflammatory cytokines (IL-6, IL-1, and TNF-α) 

must be investigated after an EPS stimulation. Their expressions are major signs of 

proinflammatory proprieties of the EPS (Table 6). Other cytokines such as IL-4, IL-10 and 

IL-12 are in fact a sign of possible immunomodulatory proprieties of an EPS if expressed 

after stimulation by the latter. For example, Il-4 is required to drive the polarization of naïve 

T cells to type 2 phenotype that secretes IL-5, IL-10 and IL-13, each of them being of extreme 

importance to the maintaining of the immune homeostasis. IL-4 also promotes the regulation 

of the inflammatory response by decreasing the expression of IL-6 and TNF-α[253]. 

Table 6. In vitro and in vivo studies on the immuno-modulatory effects of bacterial exopolysaccharides. 

Bacteria  The test used Key results Ref. 

Leuconostoc 

mesenteroides S81 

EPS incubation with HT-29 

cell line 
↗↗ IL-4 production levels  [254] 

Lactobacillus confusus 
Effect on LPS Stimulated 

macrophage- RAW264.7  

↗↗ mRNA expression of NO, TNF-α, IL-

1β, IL-6, and IL-10 

[255] 

Facilitation of the degradation of Ik-B and 

the phosphorylation of c-Jun NH2-terminal 

kinase (JNK)  
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Bacteria  The test used Key results Ref. 

Leuconostoc citreum 

L3C1E7 

Effect on LPS-stimulated 

HT-29 cells 

↘↘ IL-8 secretion by 79% as compared to 

LPS stimulation 

[256] 

Subcutaneous immunization 

of model animals with CFA  

Normalization of Allergen-specific IgG1 

plasma titer 

↘↘ IgG2a plasma levels  

Effect on OVA-induced 

asthma model of rats 

↘↘ IgE plasma levels  

↗↗ IgA plasma levels 

↘↘ IgG1 plasma levels 

↘↘ IgG2a plasma levels  

↘↘ IgE plasma levels 

Lactobacillus 

plantarum MTCC 9510 

Stimulation of human 

lymphocytes EPS 

↗↗ lymphocyte proliferation by 20% with 

0.1 mg/mL of EPS  

[144] 

Leuconostoc 

mesenteroides Strain 

NTM048 

Stimulation of mouse Peyer′s 

patch cells with EPS 

↗↗ IgA production with 1.5-fold and 1.7-

fold, respectively with 25 and 250 μg/mL of 

EPS  

[255] Stimulation of mouse 

Splenocytes cells with EPS 

↗↗ IFN-γ gene expression with 20 μg/mL 

of EPS (14.5% vs 22.4%) 

↘↘ IL-4 gene expression with 20 μg/mL of 

EPS (6.1% vs 2.7%) 

↗↗ BCL6 gene expression 

↗↗ RALDH1 gene expression  

↗↗ TGF-β1 gene expression  

↗↗ TGF-βR2 gene expression  

BALB/cA Mice immune 

System stimulation with EPS 
↗↗ CD4+T/ CD8+T cells ratio 

Enterobacter cloacae 

Z0206 

Vaccination of Broilers with 

NDV “La Sota” vaccine  

↗↗ antibody titers against NDV After 21 

(7.75 ± 0.25 vs 6.67 ± 0.33) 

[257] 
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Bacteria  The test used Key results Ref. 

↗↗ antibody titers against NDV After 35 

(6.17 ± 0.31 vs 5.17 ± 0.40) 

↗↗ antibody titers against NDV After 42 

(4.80 ± 0.37 vs 3.80 ± 0.37) 

Lactiplantibacillus 

plantarum MM89 

Incubation with RAW264.7 

cells 

 ↗↗ Phagocytosis index with 100 µg/ml of 

EPS  

[258] 

↗↗ acid phosphatase activity with 50 µg/ml 

of EPS 

↗↗ cytokine production in a dose-dependent 

manner  

cyclophosphamide-induced 

immunosuppressed mouse 

model 

↗↗ Spleen indice 

↗↗ IgA levels 

↗↗ splenic lymphocyte proliferation  

↗↗ IL-2 and TNF-α levels with 100 mg/kg 

b.w 

Lactiplantibacillus 

plantarum DMDL 

9010 

LPS-stimulated RAW264.7 

cells 

Suppression of NO and IL-6 expression  

[259] 

Inhibition of MAPK and NF-κB pathways 

activation 

Lactococcus lactis Z-2 

Disease resistance against 

Aeromonas hydrophila in 

Cyprinus carpio L. 

↗↗ TNF-α, IL-10, TGF-β, IL-1β and IL-6 

expression levels with dose-dependent 

manner  

[260] 

Enterobacter cloacae 

CP-induced 

immunosuppression in mice 

model  

↗↗ splenic lymphocyte proliferation  
[261] 

↗↗ TNF-α levels 

In the study of Taylan et al.[254], EPS from leuconostoc mesenteroides S81 showed a 

significant increase in IL-4 expression in HT-29 cell lines, without inducing the expression 

of TNF-α or IL-10, IL-12. Unlikely, in the study of Surayot et al.[255], the cleaved EPS from 

lactobacillus confusus showed important immunostimulatory activities. It proceeded to 

increase the expression of iNOS in RAW246.7 macrophages, resulting in an increase of NO 
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by the latter, moreover by activating degradation of Ik-B and increased the phosphorylation 

of JNK without affecting the phosphorylation of MAPK elements such as ERK and p38 but 

interestingly only hydrolyzed EPS showed these activities. Those EPS were either 

hydrolyzed by a dilute acidic solution in boiled water or by microwave oven with different 

boiling/microwaving times. The NO production for example, increased with the increase in 

the EPS dose, and the increase in the hydrolysis time. Those results are probably due to lower 

molecular weight saccharides having stronger conformational affinities with receptors 

expressed by the macrophages. 

Mucosa is the entry of choice of pathogens. Indeed, those tissues are exposed to the 

environment on a daily basis. The intestinal mucosa, for instance, is in constant exposure to 

bacteria, viruses, parasites, and toxins. Immune activity is deeply important for limiting this 

exposure. Immunoglobulin A (IgA) is considered by many as the first line of defence against 

those infections, IgA directly binds to pathogenic antigens, stopping them from passing the 

intestinal barrier. They also directly block receptors, and inhibit bacterial virulence by 

inhibiting their secretory systems[262]. 

In Matsuzaki et al.[263] study, they extracted EPS from leuconostoc mesenteroides and 

studied their IgA stimulation proprieties in Peyer′s patch (PP) cells and splenocytes cells, 

their results showed an increase in baseline IgA production as well as an increase in specific 

IgA production when they treated the same cells with H1N1 antigen. After treatment with 

the EPS, the CD3+, as well as the ratio of CD4+ to CD8+ significantly increased, showing 

distinct immunoregulatory propriety to the EPS. Their immunoregulatory proprieties also 

induce a rise in the CD 4+ T cells releasing IFN while reducing IL-4-producing CD 4++ T cells. 

In vivo, the oral gavage of the isolated EPS was found to increase the expression of TGF-A, 

RALDH, and BCL-6, probably due to a modulation of the T cells dependent pathway of IgA 

synthesis. Lu et al.[257] incubated Enterobacter cloacae with a medium rich in selenium, 

which resulted in a coupling of the EPS with selenium. 

When fed to an avian broiler, this Se-EPS significantly decreased the levels of 

Malondialdehyde in the serum, while increased Superoxide dismutase, catalase, and 

glutathione in the serum. Moreover, after the treatment of the chicken with the NDV virus, 

the antibody production significantly increased in the broiler fed with Se-EPS. 

4.6. Antiviral Activity 

There is a growing number of studies investigating the potential of 

exopolysaccharides as antiviral agents[264–266]. Table 7 presents a comprehensive summary of 

these studies, including information about the origin of bacterial EPS and the viral strains 
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tested, in addition to the antiviral methods employed. The findings of these studies indicate 

that exopolysaccharides possess significant antiviral properties. Further research is needed to 

fully understand the potential of exopolysaccharides as antiviral agents, but these initial 

findings are promising. 

The antiviral activity of L. plantarum LRCC5310 EPS was investigated in vitro using 

MA104 culture cells infected with Human rotavirus (HRV), and in vivo on infected BALB/c 

Neonatal Mice. The isolated EPS showed a high inhibition of virus replication in vitro by 

decreasing the viral RNA copy numbers to 7.46 log with a concentration of 1.95mg/ml. In 

mice, the treatment with 1 mg of EPS during 7 successive days, significantly decreased the 

number of newborns developing diarrhea and dehydration and enhanced the small Intestine 

state[144]. The potential anti-RVS activity of Laminaria japonica EPS was demonstrated in 

vitro using RVS-infected HEK293 cells. The treatment with EPS can up-regulate IRF3 

signaling-mediated IFN-a production and induce viral replication inhibition[267]. 

The antiviral activity of EPS isolated from Bacillus licheniformis T14 was studied 

using three different virus Herpes Simplex virus type 1 (HSV-1), Hepatitis A virus (HAV), 

and Coxsackie B4 virus. The treatment with 125µg/ ml of EPS can significantly inhibit the 

enveloped virus HSV-1 with a percentage of 84.9%, and moderately HAV and Coxsackie B4 

with 20.3% and 45.4%, respectively[235]. Weissella paramesenteroides MN2C2 EPS showed 

a complete reduction of Coxsackie B3 titer at a concentration of 3.0mg/ml[268]. EPS isolated 

from Arthrospira platensis showed significant suppression of the viral replication of koi 

herpesvirus with a concentration of less than 18µg/ml[269]. Biliavska et al.[270] investigated 

the antiviral potential of EPSs isolated from three different bacteria, Lactobacillus sp., 

Leuconostoc sp., and Pediococcus sp. against human adenovirus type 5 (HAdV-5). The EPS 

isolated from Lactobacillus sp. showed the highest viral inhibition compared to the other 

isolated EPS, 100% with a concentration of 20µg/ml, followed by the EPS extracted from 

Leuconostoc sp., 80% with a concentration of 20 µg/ml, and Pediococcus sp. EPS represented 

the lowest inhibition at the same concentration (42%). The EPS extracted from Lactobacillus 

plantarum exerted a high antiviral activity against Transmissible Gastroenteritis Virus 

(TGEV) by the inhibition of the virus proliferation and replication[269]. Overall, bacterial EPS 

can exert its antiviral activity through several mechanisms. EPS can inhibit viral replication 

and prevent the production of new virus particles, in addition to the stimulation of the 

antiviral pathways of infected cells notably IRF3 signaling-mediated IFN-alpha production. 



PMMB 2023, 6, 1; a0000384 51 of 82 

 

4.7. Antibacterial Activity 

Numerous studies have focused on the antibacterial properties of bacterial 

exopolysaccharides. Tables 7 and 8 provide a comprehensive summary of studies 

investigating these effects, including information about the bacterial exopolysaccharides’ 

origin, and antibacterial tested, the results are expressed as inhibition zone diameter (Ø), 

minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC).  

The results of these investigations have demonstrated that exopolysaccharides 

possess significant antibacterial properties. The most sensitive bacteria to Bacillus subtilis 

F9 EPS were Escherichia coli MTCC 443 followed by Staphylococcus aureus MTCC 737, 

Bacillus cereus MTCC 6629, Salmonella typhimurium ATCC14028, and Listeria 

monocytogenes 1143 by IC50 of 3, 4.5, 6, 7, and 9.5 mg/ml, respectively[250]. The EPS 

extracted from Lactobacillus sp. showed significant inhibition of Enterococcus faecium 

DSMZ 2146, Staphylococcus aureus ATCC 6583, Staphylococcus aureus DSA_226, and 

Listeria monocytogenes Scott A with a concentration of 5mg/ml while Salmonella enterica 

spp. arizonae DSMZ 9386 and Escherichia coli DSA 8048 are less sensitive[271]. Khalil et 

al.[272] also investigated the antibacterial effect of Lactobacillus sp. EPS. The extracted EPS 

displayed a strong inhibitory action against Salmonella Typhimurium, Escherichia coli, 

Pseudomons aeruginosa, and Listeria monocytogenes with an inhibition zone diameter of 8–

12mm, and against Staphylococcus aureus with an inhibition zone less than 12mm. 

Lactobacillus curvatus SJTUF 62116 EPS can completely inhibit the growth of Salmonella 

enteritidis ATCC 1307, Escherichia coli ATCC 25922, and Staphylococcus aureus ATCC 

13565 with a concentration of 20mg/ml[273].  

Table 7. In vitro and in vivo studies on the antiviral effects of bacterial exopolysaccharides. 

Bacteria  The test used Key results  Ref. 

Lactobacillus 

plantarum LRCC5310 

Human rotavirus (HRV)-infected 

MA104 cells 

↘↘ The viral RNA copy numbers to 7.46 log 

(vs 8.13 log) at 1.95mg/ml 

[274] 
Effect on Rotavirus EDIM (RV-

EDIM)- infected BALB/c 

Neonatal Mice 

↘↘ Number of newborn mice developing 

RV-EDIM-induced diarrhea 

↘↘ Acute diarrhea and severe dehydration  

Laminaria japonica 
Effect against RVS-infected 

HEK293 cells 

Up-regulation of IRF3 signaling-mediated 

IFN-a production 

[267] 

Bacillus licheniformis 

T14 

Effect against Herpes Simplex 

virus type 1 (HSV-1) 
↗↗ Inhibition by 84.9% at 125µg/ml. [235] 
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Bacteria  The test used Key results  Ref. 

Effect against Hepatitis A virus 

(HAV) 
↗↗ Inhibition by 20.3% at 125µg/ml. 

Effect against Coxsackie B4 

virus 
↗↗ Inhibition by 45.4% at 125µg/ml. 

Weissella 

paramesenteroides 

MN2C2 

Effect against Coxsackie virus 

(CVB3) 

↗↗ Reduction of CVB3 titer by 99.99% at 

3.0mg/ml 

[268] 

Arthrospira platensis Effect against koi herpesvirus 
Suppression of the viral replication at a 

concentration of >18µg/ml 

[269] 

Lactobacillus sp. 

Effect against human adenovirus 

type 5 (HAdV-5) 

↗↗ Viral inhibition to 100% at 20µg/ml of 

EPS 

[270] Leuconostoc sp. 
↗↗ Viral inhibition to ≈ 80% at 20µg/ml of 

EPS 

Pediococcus sp. 
↗↗ Viral inhibition to ≈ 42% at 20µg/ml of 

EPS 

Lactobacillus 

plantarum 

Effect against Transmissible 

Gastroenteritis Virus (TGEV)  

↗↗ Inhibition of TGEV proliferation (up to 

78%) 
[275] 

↗↗ Inhibition of TGEV RNA replication 

(71%) 

Table 8. In vitro studies on the bacterial effects of bacterial exopolysaccharides. 

EPS origin The tested bacteria Key results Ref. 

Enterobacter sp. ACD2 

 Escherichia coli Ø = 25.1 ± 0.2mm 
[276] 

Staphylococcus aureus Ø = 30 ± 0.2mm 

Bacillus subtilis F9 

Bacillus cereus MTCC 6629  IC50 = 6mg/ml 

[250] 

Listeria monocytogenes 1143  IC50 = 9.5mg/ml 

Staphylococcus aureus MTCC 737  IC50 = 4.5mg/ml 

Salmonella typhimurium 

ATCC14028  
IC50 = 7mg/ml 

Escherichia coli MTCC 443  IC50 = 3mg/ml 

Lactobacillus sp. Salmonella Typhimurium  Ø = 8–12mm [272] 



PMMB 2023, 6, 1; a0000384 53 of 82 

 

EPS origin The tested bacteria Key results Ref. 

Escherichia coli 

Pseudomonas aeruginosa  

Staphylococcus aureus  Ø = >12mm 

Listeria monocytogenes Ø = 8–12mm 

Leuconostoc 

mesenteroides (EPS_B3) 

Salmonella enterica spp. arizonae 

DSMZ 9386  
Significant inhibition at 10mg/ml 

[271] 

Escherichia coli DSA_8048 

Lag phase lengthening and reduced 

μmax and amplitude at 15mg/ml of 

EPS 

Escherichia coli DSA_451 Total grow inhibition at 20mg/ml 

Listeria monocytogenes Scott A 

Significant inhibition at 5mg/ml 

Staphylococcus aureus DSA_226 

Staphylococcus aureus ATCC 6583 

Enterococcus faecium DSMZ 2146 

Lactobacillus curvatus 

SJTUF 62116 

S. Enteritidis ATCC 1307 

Complete inhibition of bacterial 

growth at 20mg/ml 

[273] Escherichia coli ATCC 25922 

Staphylococcus aureus ATCC 13565 

Enterococcus sp. 

Staphylococcus aureus 

(ATCC25923) 
MIC = 5.25±0.3µg/ml 

[277] 

Salmonella typhimurium 

(ATCC14,028) 
MIC = 33.5±0.7µg/ml 

Enterococcus faecalis 

(ATCC29,212) 
MIC = 6.05±0.07µg/ml 

Listeria monocytogenes 

(ATCC19,111) 
MIC = 35.5±0.7µg/ml 

Escherichia coli (ATCC25,922) MIC = 10.5±0.7µg/ml 

Bacillus cereus (ATCC11,778) MIC = 11.5±0.7µg/ml 
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EPS origin The tested bacteria Key results Ref. 

 Lactobacillus plantarum 

S123 

Escherichia coli ATCC25922  Ø = 11.5 mm at 3mg/ml 
[245] 

Staphylococcus aureus ATCC29213 Ø = 7.2 mm at 3mg/ml 

Bacillus cereus Staphylococcus aureus MIC/MBC : 0.5/2mg/mL [244] 

Streptococcus 

thermophilus ZJUIDS-2-

01 

Staphylococcus aureus CMCC 

26003 

Ø = 11.4 ± 0.26 vs 15.1 ± 0.49mm 

(metronidazole) 
[278] 

Listeria monocytogenes CMCC 

54007 

Ø = 11.9 ± 0.30 vs 13.5 ± 0.83mm 

(metronidazole) 

Leuconostoc 

mesenteroides SL and 

Enterococcus viikkiensis 

N5 

Staphylococcus aureus MIC = 1.75mg/ml 

[279] Escherichia coli MIC = 2.5mg/ml 

Listeria monocytogenes MIC = 5mg/ml 

In addition, the EPS extracted from the species Lactobacillus plantarum S123 

exhibited a significant antibacterial effect against Escherichia coli ATCC25922 and 

Staphylococcus aureus ATCC29213 with an inhibition zone of 11.5 and 7.2mm at 3mg/ml, 

respectively Saleem et al.[245]. Enterococcus sp. EPS showed a high antibacterial effect 

against Staphylococcus aureus (ATCC25923), Enterococcus faecalis (ATCC29,212), 

Escherichia coli (ATCC25,922), Bacillus cereus (ATCC11,778), Salmonella typhimurium 

(ATCC14,028), and Listeria monocytogenes (ATCC19,111) with Minimal inhibitory 

concentration (MIC) of 5.25±0.3, 6.05±0.07, 10.5±0.7, 11.5±0.7, and 35.5±0.7µg/ml, 

respectively[277]. While the EPSs isolated from Leuconostoc mesenteroides SL and 

Enterococcus viikkiensis N5 exhibited relatively low activity against Staphylococcus aureus, 

Escherichia coli, and Listeria monocytogenes with MIC of 1.75, 2.5, and 5mg/ml [279]. 

Bacillus cereus EPS can significantly inhibit the growth of Staphylococcus aureus with 

MIC/MBC of 0.5/2mg/ml[244]
. 

5. EPS Applications  

Bacterial exopolysaccharides have numerous potential applications in medicine, 

agriculture, and environmental remediation. In medicine, bacterial EPS have been 

investigated for their immunomodulatory, antibacterial, and antiviral properties, as well as 

for their potential use as drug delivery systems and wound healing agents[280,281]. In 

agriculture, bacterial EPS have been explored as biofertilizers and soil conditioners[282]. 

Given their wide range of potential applications, bacterial EPS are an important area of 

research that continues to attract significant interest from scientists and industry alike. 
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5.1. Bacterial EPS in Medicine 

Bacterial EPS have gained attention in recent years due to their potential applications 

in medicine. These EPS have been found to exhibit various biological activities, such as 

antibacterial and antiviral properties, wound healing, drug delivery, and 

immunomodulation[176,280,283,284]. Bacterial EPS are of interest as a potential source of new 

therapeutics due to their diverse chemical structures and biological activities (Table 9). 

Table 9. Bacterial exopolysaccharides in medical applications. 

EPS Type Structure Bacterial Source Use in Medicine Ref. 

Dextran 
α-1,6 and α-1,3 

glucosidic linkages 

Leuconostoc mesenteroides, 

Streptococcus mutans 

Blood plasma expanders, 

wound healing 

[285–287] 

Xanthan 
Glucose, mannose, 

and glucuronic acid 
Xanthomonas campestris 

Thickening agent, wound 

healing 

[288–290] 

Pullulan 
α-1,4 and α-1,6 

glucosidic linkages 
Aureobasidium pullulans 

Drug delivery, wound 

healing 

[291,292] 

Alginate 
β-1,4 mannuronic 

and guluronic acids 
Pseudomonas aeruginosa 

Wound dressings, tissue 

engineering 

[293–295] 

Hyaluronic 

acid 

β-1,3 and β-1,4 

glucuronic and N-

acetylglucosamine 

acids 

Streptococcus zooepidemicus 
Wound healing, anti-

inflammatory 

[296–298] 

Gellan gum 
Glucose, glucuronic 

acid, and rhamnose 
Sphingomonas elodea 

Drug delivery, tissue 

engineering  

[299–301] 

Curdlan 
β-1,3 glucosidic 

linkages 
Agrobacterium species 

Drug delivery, 

immunomodulation  

[302,303] 

Fucoidan 

Sulfated fucose, 

galactose, and 

mannose 

Brown seaweed, marine 

bacteria 

Anti-inflammatory, 

anticancer 

[304–308] 

Scleroglucan 
β-1,3 and β-1,6 

glucosidic linkages 
Sclerotium rolfsii 

Drug delivery, wound 

healing  

[309,310] 

Levan 
β-2,6 fructosidic 

linkages 
Zymomonas mobilis 

Prebiotic, 

immunomodulation 

[311–314] 
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5.1.1. Antibacterial and antiviral properties 

Bacterial EPS are potential candidates for the development of new antimicrobial 

agents[315]. They can disrupt bacterial and viral cell membranes, preventing their growth and 

replication[316]. Some bacterial EPS have been found to exhibit activity against methicillin-

resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE) and 

Vibrio parahaemolyticus, antibiotic-resistant pathogens that pose significant public health 

threats[317–322]. 

5.1.2. Wound healing and tissue engineering 

EPS derived from bacteria have been discovered to facilitate the process of wound 

healing and regeneration of tissues[323]. These EPS have the capability to generate a protective 

layer on the wound site that thwarts infections and encourages cell proliferation and 

differentiation. Moreover, certain types of bacterial EPS have been shown to boost 

angiogenesis, which is vital for the restoration and regeneration of tissues via the creation of 

new blood vessels[324]. Additionally, bacterial EPS have been studied for their possible 

application in tissue engineering as they can serve as supportive structures to promote cell 

growth and differentiation[325,326]. 

5.1.3. Drug delivery systems 

Bacterial EPS has been investigated as a promising approach for drug delivery 

systems. They have the capacity to encapsulate drugs and deliver them to specific cells or 

tissues. Some bacterial EPSs have been identified as selective towards cancer cells, which 

offers a potential application in targeted drug delivery for cancer treatment[307,327]. 

Furthermore, bacterial EPS can safeguard drugs against degradation and enhance their 

bioavailability, which can enhance their efficacy and decrease the need for frequent 

dosing[328]. 

5.1.4. Immunomodulatory effects 

Bacterial EPS exhibits immunomodulatory effects by modulating the immune 

response, reducing inflammation, and stimulating the production of cytokines and 

chemokines. In addition, bacterial EPS can stimulate the production of antibodies, enhancing 

the immune response against pathogens[303,329–332]. 
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5.2. Bacterial EPS in Environmental Sustainability 

Bacterial EPS play an important role in environmental processes, particularly in 

bioremediation and biodegradation of pollutants. These molecules are able to interact with a 

wide range of environmental contaminants, such as heavy metals, pesticides, and 

hydrocarbons, and facilitate their removal from contaminated environments[333,334]. Bacterial 

EPS can also enhance soil quality and promote plant growth, making them useful in 

agriculture and environmental restoration[335,336]. 

5.2.1. Bioremediation and biodegradation of pollutants 

Bacterial EPS has been shown to enhance the bioremediation of pollutants by 

facilitating the growth of microorganisms that can degrade contaminants[333,334]. For example, 

bacterial EPS can increase the bioavailability of nutrients and reduce the toxic effects of 

heavy metals, such as lead and cadmium, which can inhibit microbial activity. Moreover, 

bacterial EPS can sequester contaminants, making them more accessible to microorganisms 

that can break them down[337]. 

5.2.2. Soil improvement and plant growth promotion 

Bacterial EPS can also play a role in improving soil quality and promoting plant 

growth. Bacterial EPS can help to enhance soil structure, water-holding capacity, and nutrient 

availability[338]. In addition, some bacterial EPS have been found to act as biofilm-forming 

agents, promoting the attachment of bacteria to plant roots and promoting plant 

growth[339,340]. The use of bacterial EPS in agriculture can help to reduce the need for 

chemical fertilizers and pesticides and can promote sustainable farming practices[282]. 

5.2.3. Biosurfactants and bioemulsifiers for industrial applications 

Bacterial EPS are used as biosurfactants and bioemulsifiers for industrial 

applications[319,341]. These EPS can help to break down hydrophobic contaminants, such as 

oil, and can facilitate the removal of contaminants from industrial processes[342]. In addition, 

bacterial EPS can be used as natural surfactants in personal care and cleaning products, 

reducing the need for synthetic surfactants[343]. 

5.3. Bacterial EPS in Agriculture 

Bacterial EPS have potential applications in soil improvement and plant growth 

promotion. They can enhance soil fertility, improve nutrient uptake by plants, and protect 
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plants from environmental stresses. Bacterial EPS can also improve the quality and yield of 

crops, making them useful in sustainable agriculture practices[338]. 

5.3.1. Soil improvement 

EPS increase soil microbial activity, which is crucial for nutrient cycling and soil 

health. Some bacterial EPS have been found to increase the abundance of beneficial soil 

microorganisms, such as nitrogen-fixing bacteria, which can help to reduce the need for 

chemical fertilizers[344–346]. 

5.3.2. Plant growth promotion 

Bacterial EPS can promote plant growth by increasing nutrient uptake and protecting 

plants from environmental stresses, such as drought and disease[347–349]. The EPS can enhance 

root growth and improve nutrient absorption by forming biofilms on plant roots [340]. In 

addition, some bacterial EPS have been found to induce systemic resistance in plants, making 

them more resistant to pathogens and pests[350]. Bacterial EPS can also enhance 

photosynthesis in plants, improving plant growth and yield[351]. 

5.3.3. Biofertilizers and biocontrol agents 

Bacterial EPS have been explored as potential biofertilizers and biocontrol agents in 

agriculture. For example, some bacterial EPS can fix atmospheric nitrogen, which can be 

used by plants as a nutrient source[352]. In addition, bacterial EPS can promote plant growth 

by enhancing nutrient uptake and increasing root growth[340,348]. Bacterial EPS can also help 

to increase plant resistance to abiotic stress, such as drought and salinity, making them useful 

for sustainable agriculture practices[349]. Streptococcus, Bacillus, Escherichia[353], 

Sphingomonas paucimobilis[354] and Sinorhizobium meliloti[355,356] species are commonly 

utilized in this context.  

6. Conclusion  

Bacterial exopolysaccharides (EPS) have been found to have diverse applications in 

medicine, agriculture, and environmental remediation. EPS produced by different bacterial 

species have unique chemical structures and physical properties that make them suitable for 

various applications. In medicine, bacterial EPS have shown promise as immunomodulators, 

wound healing agents, and drug delivery systems. In agriculture, they have been explored as 

biofertilizers and soil conditioners, and in environmental remediation, they have been used 

to remove heavy metals and other pollutants from contaminated soil and water. While many 



PMMB 2023, 6, 1; a0000384 59 of 82 

 

bacterial EPS have already found commercial applications, research in this field continues to 

explore new ways of harnessing their unique properties for a variety of uses. The potential 

for bacterial EPS to contribute to solutions for some of the world's most pressing challenges 

underscores the importance of continued research and innovation in this area. 
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