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Abstract: Streptomyces learnhanii sp. nov. MUM 203JT was isolated from Malaysia 

mangrove soil. This Gram-positive bacterium produces pale greenish-yellow aerial and 

greyish-yellow substrate mycelia on ISP 2 agar. The taxonomy status of strain MUM 203JT 

was determined via a polyphasic approach comprising phenotypic observations, genomic and 

phylogenetic analyses, and chemotaxonomic analyses. The strain demonstrated typical 

Streptomyces features based on a series of phenotypic and chemotaxonomic evaluations. In 

particular, the cell wall peptidoglycan contained LL-diaminopimelic acid, and the 

predominant menaquinones detected include MK9(H8). Analysis of whole-cell sugars 

revealed the presence of glucose, ribose and mannose. The polar lipid profile of the strain 

comprised lipid, glycolipid, phospholipid, phosphatidylglycerol, phosphatidylinositol, 

phosphatidylethanolamine, phosphoglycolipid, and diphosphatidylglycerol. The major 

cellular fatty acids (>10.0 %) were anteiso-C15:0 (24.7 %), anteiso-C17:0 (16.4 %), iso-C16:0 

(15.7 %), iso-C15:0 (11.5 %), and C16:0 (11.1 %). The closely related type strains for strain 

MUM 203JT, as determined by phylogenetic analysis, include Streptomyces coeruleorubidus 

JCM 4359T (98.8 %), Streptomyces coeruleoprunus JCM 6919T (98.5 %), Streptomyces 

thermocarboxydovorans NBRC 16324T (98.1 %). The DNA–DNA relatedness values 

between strain MUM 203JT and closely related type strains ranged from 10.7 ± 0.6 % to 23.3 

± 4.7 %. Strain MUM 203JT has a genome size of 6,446,886 bp, with DNA G + C content of 

72.26 mol%. Based on the polyphasic study of strain MUM 203JT, it can be concluded that 

this strain represents a novel species, for which the name Streptomyces learnhanii sp. nov. is 

proposed. The type strain is MUM 203JT (= NBRC 114250T = MCCC 1K04200T).  

Keywords: Streptomyces learnhanii; actinobacterium; streptomycete; mangrove; MOD-

ACTINO; SDG 15 Life on Land 

 

1. Introduction 

“Modern Actinobacteria” (MOD-ACTINO) has become the recent spotlight, 

referring to the novel or bioactive microbes from the phylum Actinobacteria discovered from 

distinct environments [1, 2]. The remarkable ability of Actinobacteria, particularly its largest 

genus ― Streptomyces, to synthesize bioactive secondary metabolites continues to captivate 

scientists around the world [3, 4]. These microorganisms exhibit unique morphological, 

physiological, and genetic features that differentiate them from other bacterial genera [5, 6]. 

Their complex life cycle enables them to grow in diverse environments, such as soils, oceans, 

and extreme habitats [7-14]. 

The advent of next-generation sequencing technology and bioinformatics tools reveal 

that Streptomyces spp. have a large genome (> 6Mbp) that could contain over 20 biosynthetic 

gene clusters account for secondary metabolites production [15-20]. They also possess cryptic 

gene clusters that are not activated under standard laboratory conditions [21]. The presence of 

these biosynthetic gene clusters contributes to their prolific production of compounds with 

great structural diversity [19, 22]. The compounds produced by Streptomyces spp. include 
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bioactivities like antibacterial [23, 24], antifungal [25-27], anticancer [28-30], antioxidant [31-33], 

neuroprotection [34, 35], and plant growth promotion [36-38]. 

Streptomyces spp. are notably known for their production of antibiotics that are 

commercially available [39-41]. Recent studies have explored its capacity to combat deadly 

pathogens, such as Methicillin-resistant Staphylococcus aureus (MRSA) [42-46], and SARS-

CoV-2 virus [47-49]. COVID-19 pandemic caused by the SARS-CoV-2 virus had resulted in a 

substantial loss of human lives worldwide and impacted our global economy [50-57]. The 

emergence of COVID-19 variants of concern over time remains a matter of public health 

issue [58-60]. Other efforts that have been taken to treat COVID-19 infection, including the 

repurposing of Ivermectin (derivative of Streptomyces-derived Avermectin) [61, 62]. Apart 

from these, the probiotics properties of Streptomyces have also been explored, especially in 

aquaculture sector [63-66]. Numerous studies demonstrated that Streptomyces spp. exhibited 

promising antimicrobial activity against Vibrio spp. [67-69], which are the pathogens causing 

vibriosis in fishes, shrimps, and prawns [70-73]. Vibrio spp. are also among the main culprits 

of foodborne disease outbreaks [74-78]. Therefore, the antimicrobial effect produced by 

Streptomyces spp. is connected to their probiotic function, serving to offer protection against 

infection in aquatic organisms [79-81].   

One of the approaches to discover new MOD-ACTINO is to explore the special 

environments such as mangroves. Mangroves constitute highly specialized ecosystems that 

thrive in the intertidal areas of lagoon and estuaries at tropical and subtropical areas. 

Mangroves are characterized by their harsh coastal environmental conditions (e.g., 

fluctuating salinity, high UV exposure and temperature, and low nutrients) [82, 83]. There are 

bacteria that can adapt and proliferate in such harsh environments, and thus, mangrove forests 

pose as a rich source for novel bioactive Streptomyces species discovery [84-89]. This study 

aims to isolate, identify, and characterize a novel Streptomyces strain, MUM 203JT, from 

mangrove soils collected in Malaysia. A series of phenotypic, genomic, and chemotaxonomic 

assays have been conducted to understand the strain from different perspectives. The whole 

genome of strain MUM 203JT has been sequenced, and bioinformatic analyses have been 

performed to investigate the strain’s potential for bioactive compound production.  

2. Materials and Methods  

2.1. Sampling and Isolation of strain MUM 203JT  

In June 2015, the soil samples were obtained from a mangrove situated at the East of 

Malaysia. Strain MUM 203JT was discovered from mangrove soil sample originated at the 

mangrove site labelled as KTTAS 7 (1º41’48.08”N 110º11’15.14”E). Soil samples were air-

dried and selectively pretreated via wet-heat at 50 ºC for 15 minutes [84]. Strain MUM 203JT 

was isolated from a peptone yeast extract iron agar (ISP 6) plate supplemented with 

cycloheximide (50 mg/L) and nalidixic acid (20 mg/L), and purified on ISP 2 media. Pure 

cultures were maintained on ISP 2 agar slants and tryptic soy broth (TSB) glycerol 

suspensions (20 %, v/v) at -20 °C.  
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2.2. Phenotypic Tests  

The growth of strain MUM 203JT was tested at varying pH ranges (pH 2–10) and 

salinity (0–10 % NaCl) in TSB, incubated at 28 C at 200rpm for 14 days. Strain MUM 203JT 

was cultured on ISP 2 agar plates and incubated at different temperatures ranging 4–50 C to 

observe the growth for up to 14 days. Enzymatic activities of strain MUM 203JT, including 

hemolytic, amylolytic, cellulase, chitinase, catalase, protease, and xylanase were tested [87]. 

A total of 12 media: yeast malt agar (ISP 2), oat meal agar (ISP 3), inorganic salt 

starch agar (ISP 4), glycerol asparagine agar base (ISP 5), peptone yeast extract iron agar 

(ISP 6), tyrosine agar base (ISP 7), actinomycetes isolation agar (AIA), Streptomyces agar 

(SA), starch casein agar (SCA), nutrient agar (NA), Luria-Bertani agar (LBA), and Mueller 

Hinton agar (MHA), were used to culture strain MUM 203JT, incubated at 28 C and 14 days 

for colony morphology observations [86, 90]. The colony colours were given based on ISCC-

NBS colour charts. The detection of melanoid pigments was carried out on ISP 6 and ISP 7 

agar plates [91]. The cells of strain MUM 203JT was observed under Light microscopy (80i, 

Nikon) and scanning electron microscopy (JEOL-JSM 6400) after growing on ISP 2 agar 

plate at 28 C for 7–14 days.  

2.3. Genotypic and Phylogenetic Examinations  

DNA extraction and PCR amplification of the 16S rRNA gene for the strain MUM 

203JT were conducted [86, 87, 90], followed by the determination of sequence similarities of the 

acquired sequence with its related type strains via BLAST search on the EzBioCloud 

database (http://www.ezbiocloud.net/). Manual alignment of strain MUM 203JT 16S rRNA 

gene sequence with other representative sequences of related Streptomyces type strains 

retrieved from the GenBank/EMBL/DDBJ databases using CLUSTAL-X software was 

carried out. Phylogenetic analysis was performed with neighbour-joining [92, 93] and 

maximum likelihood [94] algorithms using MEGA version 7.0. Bootstrap analysis with 1000 

resamplings was performed according to Felsenstein [95]. 

Strain MUM 203JT and its closely related type strains determined upon 16S rRNA 

gene sequence similarities and phylogenetic analysis: Streptomyces coeruleoprunus JCM 

6919T, Streptomyces coeruleorubidus JCM 4359T, and Streptomyces 

thermocarboxydovorans NBRC 16324T, were sent to Identification Service of the DSMZ, 

Braunschweig, Germany for DNA-DNA hybridization analysis [96, 97]. 

2.4. Whole Genome Sequencing and Bioinformatic Analysis of Strain MUM 203JT 

Total genomic DNA of strain MUM 203J was extracted using MasterPure™ Gram 

Positive DNA Purification Kit (Lucigen/Epicentre, USA). The extracted DNA quality was 

checked using NanoDrop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA) 

and Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA). Library preparation was 

constructed using NEXTERA DNA Flex Library Prep Kit (Nextera, USA). Libraries were 

sequenced on Illumina MiSeq platform with MiSeq Reagent Kit v3 (Illumina Inc., Madison, 

http://www.ezbiocloud.net/
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WI, USA). FastQC (version 0.11.9) [98] was utilized for verification of the quality of obtained 

sequencing reads. Trimming of adapters and raw reads were conducted using BBDuk of 

BBTools (v36) and then assembled using St. Petersburg genome assembler (SPAdes) 

(v3.14.1) [99].  

The assembled genomic sequence was annotated by the NCBI Prokaryotic Genome 

Annotation Pipeline (PGAP) and analyzed Rapid Annotation using Subsystem Technology 

(RAST) database (https://rast.nmpdr.org/), set at default pipeline for RASTtk, domain 

bacteria, and automatically fixed error options turned on [100, 101]. The genome of strain MUM 

203JT was compared with genomes of closely related Streptomyces species (retrieved from 

NCBI database) using FastANI (version 1.33) [102]. Phylogenomic analysis of strain MUM 

203JT was done by Type Strain Genome Server (https://tygs.dsmz.de) [103]. Biosynthetic gene 

clusters related to secondary metabolite production were detected and analyzed using 

antiSMASH (version 7.0) [104]. 

2.5. Chemotaxonomic Properties 

Chemotaxonomic investigations of MUM203JT were conducted by Dr. Brian Tindall, 

Identification Service of the DSMZ, Braunschweig, Germany, which include the analyses of 

cell wall peptidoglycan, respiratory quinones, whole cell sugars, fatty acids, and polar lipids 
[86, 87, 90, 105]. 

3. Results 

3.1. Phenotypic Features of Strain MUM 203JT 

Strain MUM 203JT grew at 26 – 37 °C (optimum 26 – 32 °C) and optimally at pH 

6.0-8.0, with 0 – 2 % NaCl tolerance. The strain exhibited positive catalase and amylolytic 

activity. The strain also exerted alpha hemolysis. Furthermore, strain MUM 203JT showed 

good growth on ISP 6, SA, LBA, and MHA; moderately good growth on ISP 2, SCA, and 

NA; poor growth on ISP 5, ISP 7, and AIA (Table 1). No growth was detected on ISP 3 and 

ISP 4 (Table 1). The colours of aerial and substrate mycelia of strain MUM 203JT shown on 

different media were presented in Table 1. Melanoid pigment was formed on ISP 6 agar only. 

Phenotypic experiments were conducted simultaneously on strain MUM 203JT, S. 

coeruleoprunus JCM 6919T, S. coeruleorubidus JCM 4359T, and S. thermocarboxydovorans 

NBRC 16324T (supplementary Table S1). Strain MUM 203JT displayed the typical features 

of the genus Streptomyces under scanning electron microscopy (Figure 1).  

 

 

 

 

 

https://rast.nmpdr.org/
https://tygs.dsmz.de/
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Table 1. The growth and colony colour of Streptomyces learnhanii sp. nov. MUM 203JT on different 

culture media. 

Medium Growth Colony colour 

  Aerial mycelium Substrate mycelium 

Yeast malt agar (ISP 2) Moderate Pale greenish yellow Greyish yellow 

Oat Meal agar (ISP 3) No growth - - 

Inorganic Salt Starch agar (ISP 4) No growth - - 

Glycerol Asparagine Agar Base (ISP 5) Poor Yellowish white Yellowish white 

Peptone Yeast Extract Iron agar (ISP 6) Good Light greyish olive Dark greyish olive 

Tyrosine agar base (ISP 7) Poor Yellowish white Pale yellow 

Actinomycete isolation agar (AIA) Poor Yellowish white Pale yellow 

Streptomyces agar (SA) Good Moderate yellow Greyish yellow 

Starch casein agar (SCA) Moderate Light olive brown Deep yellow 

Nutrient agar (NA) Moderate Pale yellow Light yellow 

Luria bertani agar (LBA) Good Pale yellow Light yellow 

Mueller Hinton agar (MHA) Good Yellowish grey Deep yellow 

-, Not detected 

 

 

Figure 1. Streptomyces learnhanii sp. nov. MUM 203JT, image obtained by scanning electron microscopy. 

3.2. Genotypic and Phylogenetic Outcomes Based on 16S rRNA Gene Sequences  

The almost complete 16S rRNA gene sequence of strain MUM 203JT was obtained 

(1490 bp; GenBank/EMBL/DDBJ accession number MK368443). Phylogenetic analyses 

based on neighbour-joining (Figure 2) and maximum-likelihood algorithms (supplementary 

Figure S1) in combination with 16S rRNA gene sequence analysis revealed that the closely 

related strains are S. thermocarboxydovorans NBRC 16324T (98.1% sequence similarity), S. 

coeruleorubidus JCM 4359T (98.8 %), and S. coeruleoprunus JCM 6919T (98.5 %). 

According to Figure 2, strain MUM 203JT appeared closely related to S. 

thermocarboxydovorans NBRC 16324T (DSM 44296T), forming a distinct clade.  
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Figure 2. Neighbour-joining phylogenetic tree based on 1490 nucleotides of 16S rRNA gene sequence showing 

the relationship between Streptomyces learnhanii sp. nov. MUM 203JT and representatives of related taxa. 

Numbers and nodes indicate percentages (> 50 %) of 1000 bootstrap re-sampling. Bar, 0.002 substitutions per 

site. 

 

The DNA-DNA relatedness levels between strain MUM 203JT and respective closely 

related type strains were 23.3 ± 4.7 % with S. thermocarboxydovorans NBRC 16324T, 10.7 

± 0.6 % with S. coeruleorubidus JCM 4359T (98.8 %), and 15.3 ± 3.8 % with S. 

coeruleoprunus JCM 6919T. These levels were significantly below the 70 % DNA-DNA 

similarity cut-off point for defining bacterial species [106].  

3.3. Whole Genome Sequence of Strain MUM 203JT 

Strain MUM 203JT has a genome size of 6,446,886 bp, with DNA G + C content of 

72.26 mol%, and average coverage of 125.71-times (Table 2). There were 5731 coding 

sequences with 67 tRNAs and 7 rRNAs predicted. The genome sequence of strain MUM 
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203JT has been deposited at DDBJ/EMBL/GenBank with accession number 

JADWYO000000000.   

Table 2. Streptomyces learnhanii sp. nov. MUM 203JT genome information. 

 Streptomyces learnhanii sp. nov. MUM203JT 

Genome size (bp) 6,446,886 

Contigs 147 

Contigs N50
 (bp) 84,552 

G + C content  72.26 % 

Genome coverage 125.71x 

CDS 5731 

tRNA 67 

rRNA 4(5S), 1(16S),2(23S) 

 

Furthermore, a total of 1185 subsystems have been determined by RAST (Figure 3). 

Most of the genes are amino acids and derivatives metabolism (6.4 %), carbohydrates 

metabolism (4.0 %), and protein metabolism (3.9 %). The antiSMASH predicted biosynthetic 

gene clusters responsible for production of ectoine (100 % deduced amino acid sequence 

similarity), geosmin (100 %), venezuelin (100 %), antipain (100 %), and hopene (76 %) in 

the genome of strain MUM 203JT.  

 

 

Figure 3. The subsystem category distribution of Streptomyces learnhanii sp. nov. MUM 203JT according to 

RAST.  
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The comparison of whole genome sequences between strain MUM 203JT and its 

closely related type strain S. coeruleorubidus JCM 4359T based on FastANI analysis 

estimated an ANI value of 81.32 %. TYGS analysis further supported that strain MUM 203JT 

is a potential novel species with digital DDH (dDDH) of < 27.3 % for all closely related type 

strains.  

3.4. Chemotaxonomic Characteristics of Strain MUM 203JT 

Strain MUM 203JT possessed LL-diaminopimelic acid in the cell wall. Major 

menaquinones identified were MK9(H8) (approximately 70 %), and others include MK9(H4), 

MK9(H6), and MK9(H12). The whole cell sugars of MUM 203JT were glucose, ribose, and 

mannose. Fatty acids of strain MUM 203JT were majority comprised of anteiso-C15:0 (24.7 

%), anteiso-C17:0 (16.4 %), iso-C16:0 (15.7 %), iso-C15:0 (11.5 %) and C16:0 (11.1 %) (Table 3). 

Some similarities in fatty acids composition between strain MUM 203JT, S. 

thermocarboxydovorans NBRC 16324T, S. coeruleorubidus JCM 4359T, and S. 

coeruleoprunus JCM 6919T can be observed. For instance, all of them had anteiso-C15:0 and 

iso-C16:0 as major fatty acids, but with quantifiable differences (Table 3). The polar lipid 

profile of strain MUM 203JT is shown in Figure 4, in which the presence of lipid, glycolipid, 

phospholipid, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, 

phosphoglycolipid, and diphosphatidylglycerol were detected.  

 

Figure 4. Total lipid profile of Streptomyces learnhanii sp. nov. MUM 203JT. L, lipid; GL, glycolipid; PL, 

phospholipid; PI, phosphatidylinositol; PG, phosphatidylglycerol; PE, phosphatidylethanolamine; PGL, 

phosphoglycolipid; DPG, diphosphatidylglycerol. 
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Table 3. Fatty acids detected in Streptomyces learnhanii sp. nov. MUM 203JT and three closely related 

type strains, Streptomyces coeruleoprunus JCM 6919T, Streptomyces coeruleorubidus JCM 4359T, and 

Streptomyces thermocarboxydovorans NBRC 16324T. 

Fatty acid Streptomyces 

learnhanii 

MUM 203JT 

Streptomyces 

coeruleoprunus 

JCM 6919T   

Streptomyces 

coeruleorubidus 

JCM 4359T   

Streptomyces 

thermocarboxydovorans 

NBRC 16324T 

iso-C13:0 - - 0.3 0.5 

iso-C14:0 2.6 2.7 4.6 5.8 

C14:0 0.5 0.3 0.3 0.3 

iso-C15:0 11.5 7.9 16.3 20.6 

anteiso-C15:0 24.7 29.1 14.9 14.5 

C15:1 B - - - 0.4 

C15:0 1.4 1.1 0.9 1.7 

iso-C16:1 H 1.0 0.3 0.8 2.1 

iso-C16:0 15.7 17.6 17.2 24.1 

C16:1 Cis 9 2.4 0.3 2.9 1.3 

C16:0 11.1 6.1 8.6 7.0 

C16:0 9Methyl 2.4 0.5 4.0 0.8 

anteiso-C17:1 C 1.9 1.2 2.0 0.3 

iso-C17:0 6.7 4.8 11.1 9.6 

anteiso-C17:0 16.4 24.8 14.4 8.7 

C17:1 Cis 9 - - 0.5 - 

C17:0 Cyclo 0.8 0.9 0.4 0.5 

C17:0 0.9 0.6 0.8 1.4 

iso-C18:0 - - - 0.3 

-, <0.1% or not detected. All data are obtained concurrently from this study. 

4. Discussion 

The discovery of novel Streptomyces species poses an important strategy that holds 

the potential to unveil untapped reservoirs of bioactive compounds. Identifying novel 

Streptomyces species involves a polyphasic approach to study, understand, and characterize 

the strain [107-109]. Numerous techniques are applied in this identification and characterization 

process, which include the conventional culture methods, rapid polymerase chain reaction 

(PCR) molecular-based method, chromatography, and advanced next-generation sequencing 
[4, 110]. Notwithstanding the substantial count of recognized Streptomyces species, which is 

about 1179 validated species to date, this study further highlights that mangrove serves as an 

untapped source for novel Streptomyces species discovery. Strain MUM 203JT isolated from 

a Malaysian mangrove forest has been proven to be a novel Streptomyces species in the 

present investigation.  

 Strain MUM 203JT exhibited the typical phenotypes of the genus Streptomyces, for 

instance, the development of aerial and substrate mycelia that can be observed through its 
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growth on different culture media (Table 1) and SEM imaging (Figure 1). The 

chemotaxonomic findings offer supplementary validation that strain MUM 203JT is indeed a 

member of the Streptomyces genus, with the presence of LL-diaminopimelic acid in cell wall 

peptidoglycan and prevailing menaquinone MK9(H8) that are typically observed within the 

genus [86, 90, 111-115]. Strain MUM 203JT can grow optimally at 26 – 32 °C, pH 6.0-8.0, and in 

the presence of up to 2 % NaCl. It falls within the range of similar growth parameters as 

exhibited by other Streptomyces spp. originated from mangrove environments, which have 

been demonstrated by previous studies [86, 90, 116].  

Further analyses were conducted to confirm the novelty of strain MUM 203JT. The 

results of 16S rRNA gene sequence similarity and phylogenetic analyses showed that the 

closest related type strains of strain MUM 203JT were S. thermocarboxydovorans NBRC 

16324T, S. coeruleorubidus JCM 4359T, and S. coeruleoprunus JCM 6919T (98.5 %). As 

illustrated in Figure 2 phylogenetic tree, a considerable evolutionary distance exists between 

strain MUM 203JT and other type strains, highlighting strain MUM 203JT’s substantial 

potential as a novel species. The novelty of strain MUM 203JT is validated by DDH and ANI 

measurements, both of which are acknowledged methods to delineate bacterial species, with 

threshold values set at DDH < 70 % and ANI < 95 % [117, 118]. Wet-lab DDH analysis, which 

is a gold standard for bacterial species delineation, was conducted and the whole-genome 

comparison between strain MUM 203JT and its closest related type strains that resulted in 

DDH values of less than 23.3 %. Besides, TYGS analysis was also performed for strain MUM 

203JT. TYGS is an alternative, least laborious genome-based computational method for 

prokaryote taxonomy and classification [103]. Results from TYGS demonstrated that 

comparison between strain MUM 203JT and all closely related type strains presented < 27.3% 

dDDH values. Both methods emphasized that the DDH values were significantly below 70 

%, thus, affirming the proposition that strain MUM 203JT indeed constitutes a novel species 
[103, 106]. Additionally, the output of FastANI complements the DDH results. The estimated 

ANI values were significantly < 95 % between strain MUM 203JT and its closely related type 

strain S. coeruleorubidus JCM 4359T. Therefore, the evidence strongly supports that strain 

MUM 203JT is a novel species within the genus Streptomyces.   

Strain MUM 203JT has a large genome size of 6,446,886 bp, with a high DNA G + C 

content of 72.26 mol%. Based on antiSMASH prediction, strain MUM 203JT harbored 

biosynthetic gene clusters encoding compounds that are frequently produced by various 

Streptomyces spp., for instance, geosmin, ectoine, antipain, and hopene [112, 119, 120]. Antipain 

is a protease inhibitor that has been reportedly found in actinobacteria such as Streptomyces 
[120]and Planomonospora [121]. Hopene is a common precursor in the metabolic pathway of 

hopanoids and a component of cytoplasmic membrane, which could aid in the defence against 

water loss across the plasma membrane in the aerial mycelium [122-124]. Besides, Streptomyces 

spp. are known for their “earthy odour”, and this is due to the production of geosmin [125, 126]. 

Geosmin is a volatile compound that contributes to the distinct “earthy odour” or “fragrance 

of moist soil” produced by microorganisms [127]. Studies have reported that ectoine aids 

bacterial adaptation in extreme environments, including mangroves distinguished by their 



PMMB 2023, 6, 1; a0000342 12 of 20 

 

constant changes in salinity and high temperatures [82, 128-131]. In addition, geosmin and 

ectoine are capable of exerting bioactivities [119]. Khoshakhlagh et al. [132] investigated on the 

secondary metabolites of Streptomyces spp. and they discovered that ectoine and geosmin 

both exhibited significant antimicrobial against Staphylococcus aureus and anticancer 

activity towards A549 lung adenocarcinoma cells. The anticancer activity of ectoine has been 

pointed out by several other studies [119, 133, 134]. Furthermore, ectoine has anti-inflammatory 

properties [135, 136]. Based on these predictions, the novelty of strain MUM 203JT is 

accompanied by bioactive potential and it is a promising MOD-ACTINO that is worthwhile 

to be further explored for the production of medically valuable compounds.  

5. Conclusion and Description of Streptomyces learnhanii sp. nov. MUM 203JT 

Streptomyces learnhanii sp. nov. (learn.ha'ni.i. N.L. gen. n. learnhanii, of Professor 

Ts Dr. Lee Learn-Han, a molecular microbiologist in the field of microbial systematics and 

multidrug resistant pathogens), the type strain is MUM 203JT (= NBRC 114250T = MCCC 

1K04200T), and it is isolated from a mangrove forest at East Malaysia. The 16S rRNA gene 

sequence of strain MUM 203JT has been deposited in GenBank/EMBL/DDBJ under the 

accession number MK368443. The genome of strain MUM 203JT consists of 6,446,886 bp 

and DNA G + C content is 72.26 mol%. Genome sequence of the strain can be found at 

DDBJ/EMBL/GenBank under the accession number JADWYO000000000.  

S. learnhanii sp. nov. MUM 203JT is a Gram-positive and aerobic actinobacterium 

that forms pale greenish-yellow aerial and greyish-yellow substrate mycelia on ISP 2 agar. 

The strain grows well on ISP 6, SA, LBA, and MHA, with melanoid pigment formed on ISP 

6. The strain can grow at 26 – 37 °C, pH 6.0 – 8.0, and with 0 – 2 % NaCl. The cells are 

positive for catalase, amylolytic and alpha-hemolytic activities. The cell wall peptidoglycan 

contains LL-diaminopimelic acid and the predominant menaquinone is MK9(H8). The 

whole-cell sugars are glucose, ribose and mannose. Polar lipids of strain MUM 203JT consist 

of lipid, glycolipid, phospholipid, phosphatidylglycerol, phosphatidylinositol, 

phosphatidylethanolamine, phosphoglycolipid, and diphosphatidylglycerol. The major 

cellular fatty acids (>10.0 %) are anteiso-C15:0, anteiso-C17:0, iso-C16:0, iso-C15:0, and C16:0.  
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