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Abstract: As feed accounts for a significant proportion of a farm’s expenditure, animal 

nutrition is one of the key profit determinants. Attributed to the size-dependent market value, 

enhancing shrimps' growth is essential to maximize profit. Despite not being the best option, 

antibiotics are often used as growth-promoting agents in farming. Although this trend is less 

explicit in aquaculture, increasing production yield is paramount, especially when intensive 

aquafarming compromises animal growth and increases disease prevalence. However, the 

environmental and clinical pitfalls of indiscriminate antibiotic usage are surfacing. 

Fortunately, increasing evidence demonstrated probiotics as a safer, more sustainable, and 

environmental-friendly substitute for antibiotics. Nonetheless, most studies are 

observational, and the growth-promotion mechanisms of these agents are yet to be elucidated. 
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In this light, this review aims to decipher the growth promotion mechanisms of probiotics in 

shrimps based on the primary works conducted. Evidently, probiotic treatment modulates the 

gut microbiome composition. The growth promotion effect of probiotics is partly mediated 

through the production of bioactive compounds such as short-chain fatty acids, vitamins, and 

polyamines. Besides, elevated digestive enzyme activities following the introduction of 

probiotics may help enhance digestibility and utilization. Histological changes at the 

hepatopancreas and intestine were evident. Furthermore, probiotics may reinforce the 

protective mechanisms in the gut and strengthen immune function. Treated shrimps 

demonstrate better appetite and exhibit superior metabolic and growth-related genes profile. 

Contrasting these recognized mechanisms with antibiotics helps construct the initial 

framework for designing high-quality probiotics for growth enhancement in farmed animals. 

Keywords: growth; probiotic; feed additives; mechanism; shrimp; antibiotic 

 

1. Introduction 

In recent years, progress in the aquaculture industry has been gaining increasing 

momentum. According to a recent report released by the Fisheries Department of the Food 

and Agriculture Organization (FAO), global aquaculture production rises by 6.1% annually, 

with the highest production centred in Asia [1]. Although crustaceans only account for 7.5% 

of the total global production by weight, it is characterized by a high unit value, which 

amounts to 24.5% of the total global production value [1, 2]. Shrimp aquaculture, which has 

emerged as a promising economic endeavour, has been progressively intensified in many 

developing countries [1]. Over the past two decades, crustacean production has increased by 

9.9% annually, achieving 8.4 million tonnes in 2017. Among the shrimp species cultured, the 

Pacific white shrimp (Litopenaeus vannamei) recorded the highest production rate, which is 

followed by the black tiger shrimp (Penaeus monodon) and the giant freshwater prawn 

(Macrobrachium rosenbergii) [1, 2]. Despite the promising development, further 

intensification of shrimp farming often reaches a bottleneck where the high stocking density 

significantly increases the risk of disease transmission and severely decimates the production 

yield [3-6]. Attributed to the high unit price of shrimp and the size-dependent market value, 

optimizing the growth of shrimp within the shortest production frame became a pivotal factor 

in maximizing revenue. A higher production yield would compensate for the untoward losses 

to disease episodes and sustain the culture production [7].  

The application of antibiotics at subtherapeutic doses for disease control and growth 

enhancement has been a time-honored convention in farming practice [8-10]. Data from The 

State of the World’s Antibiotics 2015 revealed that 65% of the 100,000 tonnes of antibiotics 

produced globally were capitalized for animal production [11]. However, the negative impacts 

of antibiotic use are gradually surfacing. The detection of high antibiotic residue levels in the 

farm wastewater and sediment of shrimp ponds poses a threat to the surrounding marine or 

coastal ecosystems [12-15]. Antibiotic use exerts a selective pressure on resistant bacteria, 
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which creates a risk for the transference of antimicrobial resistance genes (ARGs) to other 

bacteria via horizontal gene transfer mechanisms such as transformation, conjugation, or 

transduction [14, 16]. This gradually precipitates the emergence of multi-antibiotic-resistance 

bacteria pathogenic to other animals and humans [17-24]. Besides, the residual antibiotic 

detected in animal flesh is another alarming concern for public health, particularly when the 

concentration of antibiotics exceeds the maximum residue limit [25, 26]. The increasing 

awareness regarding the detrimental consequences of indiscriminate antibiotic use has 

increased the demand for antibiotic-free products from sceptical consumers. In some 

countries, drastic antibiotic use restrictions have been reflected in banning certain antibiotics 

or stringently controlling their application for limited indications [27, 28]. 

The environmental hazards and health threats accompanying antibiotic application 

hampered its continuous use in farming. Therefore, the quest for a safer and sustainable 

alternative to antimicrobial growth promoters (AGPs) is an exigency to safeguard the animal 

production yield and to forestall the aggravation of antimicrobial resistance (AMR) 

development. At this juncture, a mounting body of research evaluates the effectiveness of 

probiotics as a potential candidate to replace antibiotics in farming [29-31]. On average, meta-

analysis results revealed that probiotic treatment improved the feed conversion ratio (FCR) 

of 49 studies and the specific growth rate (SGR) of 60 studies by 19% and 14%, respectively 
[32]. Several studies reported that probiotics demonstrated comparable growth promotion 

effects to antibiotics [33-35]. Moreover, besides the growth promotion effects, probiotics also 

elevate the resistance to disease and environmental stressors, enhance the animal's immune 

function and ameliorate the quality of rearing water [36-39].  

More often than not, the growth enhancement effects of probiotics are typically 

reported as a mere ‘positive side effect’ to its primal role in disease control. Acknowledging 

the dire need to enhance aquaculture yield, the growth enhancement effects of probiotics 

should, instead, be maximally harnessed in the current farming practice to increase farm 

production. Probiotics use in aquaculture could be a boon to the farming industry. Therefore, 

further research is warranted to investigate how probiotics can be more efficiently integrated 

with the feed additives commonly applied in farms. In this light, this review aims to compile 

the possible probiotic mechanisms contributing to the growth of shrimps. Deciphering the 

mechanisms of probiotics about the action of AGPs also helps to develop better alternatives 

to AGPs. Addressing this knowledge gap will shed light on the positive traits of probiotics 

that facilitate the growth of livestock. Understanding these crucial factors will be critical for 

developing probiotics tailored for the growth enhancement of shrimps.  
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2. Antimicrobial Growth Promoters  

Antibiotic has been an indispensable confederate in farming practice [40]. It is still the 

mainstay for disease management among husbandry animals, especially during the early 

breeding phases [41]. Antimicrobial agents can be administered via different routes, including 

direct application to water, incorporated into feed, or injected intramuscularly [14, 41]. 

Sulphonamides, tetracyclines, quinolones, chloramphenicol, and nitrofurans have been 

extensively exploited for aquaculture use [25, 42]. Usage of oxytetracycline, sulphadiazine, 

florfenicol, amoxicillin, oxolinic acid, sulphamethoxazole, trimethoprim, and erythromycin 

have also been recorded [43, 44]. 

Nevertheless, it is difficult to estimate the total annual global antibiotic use in shrimp 

farming alone. This is attributed to the discrepancies in farming modes, climates, disease 

risks, antibiotic limits, and the regular shifts between the diverse farmed species [43, 45]. 

Moreover, the policies vary significantly between countries, and there is little detail regarding 

each region's indication and antibiotic usage pattern [46].  

Although using antimicrobials at subtherapeutic doses to boost growth performance 

has been discouraged for animals intended for food supply, some farmers still embrace 

antibiotics for their growth-promoting effects in aquaculture [17]. On average, antibiotics use 

could increase feed utilization by 2% to 5%, translating to an estimated growth improvement 

ranging from 4% to 8% [47]. For example, over eight weeks, the SGR and weight gain rate 

(WGR) in L. vannamei receiving daily supplementation of 0.3% florfenicol to the basal diet 

increased by 2% and 7%, respectively, when compared to the untreated control [35]. In another 

experiment, daily inoculation of oxytetracycline directly to the rearing water at a 

concentration of 4 mg/L resulted in a significantly 8% higher development rate of L. 

vannamei larvae after nine days of treatment [34]. The growth promotion effect may differ 

according to animal species, antibiotic selection, and treatment regimens.   

In recent years, increasing reports unveiled environmental and food safety concerns 

regarding antibiotics usage [48, 49] [50-53]. Ironically, in contrast to the expected decline in 

antibiotic use following the heightened consciousness of their negative implications, 

antibiotic consumption for aquacultural purposes is still threading on an increasing trend [54]. 

Judging from the continuously increasing demand for food production, the global 

antimicrobial utilization intended for food production is forecasted to exceed 100,000 tonnes 

by 2030 if no proper substitute for AGP for farming is sought [41]. Therefore, it is crucial to 

decipher the mechanisms of antibiotics in enhancing the survival and growth of animals in 

the quest for a desirable replacement compound.  

2.1. Mechanisms of AGPs  

For a long time, the growth promotion effect of antibiotics was attributed to the 

suppression of subclinical infections [55]. The bacteriostatic or bactericidal effect against 
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opportunistic pathogens helps mitigate disease occurrence in intensive farming [56]. Although 

the antimicrobial effect at a subtherapeutic dose was speculative [57], this rationale has 

invariably augmented the unwarranted use of prophylactic antibiotics to overcome the 

sanitary shortcomings in crowded farming sites [17]. The remarkable growth-promoting effect 

remains a subject of interest that intrigues many researchers. The underlying mechanism of 

antimicrobial growth promoters is yet to be fully elucidated. Several hypotheses were 

proposed to explain the growth-promoting phenomenon of antibiotics. However, there is still 

ongoing debate regarding the plausibility of these hypotheses [57]. 

Further research is warranted to fill the knowledge gap. Nonetheless, the mechanisms 

can be broadly classified into two categories: bacterial-centric and host-associated factors 

(Figure 1). Rather than treating these factors as exclusive events, it is highly probable that 

these two mechanisms complement each other and dually contribute to animal growth. These 

two factors are further compounded by other external factors such as hygiene, stress, and diet 
[58].  

 

Figure 1. The bacterial-centric and host-centric growth-promoting mechanisms of AGP. 

An underlying assumption for the bacterial-centric hypothesis is that normal gut 

microbiota suppresses animal growth [57]. This notion is well promulgated by the fact that 

AGPs do not promote the growth of germ-free mice. Meanwhile, depression of growth 

becomes evident following the inoculation of bacteria to germ-free mice [57].  In this sense, 

the growth promotion mechanism can be expounded through the concept of ‘dysbiosis’. 

Dysbiosis is a term that describes the compositional shift of bacteria distribution in the gut 

induced by a disruption to the gut microbial homeostasis leading to metabolic and functional 

changes. Antibiotic was believed to be an intervening factor that disrupts the homeostatic 

balance [59]. It causes a significant alteration of gut microbiota composition in the treated 
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animals. The growth promotion effect becomes evident when microorganisms with better 

metabolizing potential gain predominance in the gastrointestinal tract [60]. Increasing 

evidence demonstrated the involvement of gut microbiota in energy conversion and 

metabolic processes [61]. The gut microbiota composition indirectly influences the host's 

metabolic activity. This idea has been well supported by several studies involving mice 

models [62-68]. Another possible explanation within this context is that antibiotics caused a 

reduction in the bacteria population residing in the gastrointestinal tract. This may reduce in 

proportion the growth-suppressing toxins or nutrient-destructing metabolites such as 

biogenic amines and ammonia secreted by the gastrointestinal bacteria. In this sense, AGPs 

are sometimes regarded as growth-permitting instead of growth-promoting agents [57]. 

Scaling down the population of competing microorganisms also spares the nutrients and 

increases the energy sources available for the host cells. Besides, suppressing the pathogenic 

strains within the gut also indirectly lowers the incidence of intestinal infections [69-72]. 

Repressing subclinical infections eradicates the unnecessary energy drainage through the 

immune function and conserves the energy store to favour growth [73].  

From the host-centric perspective, the immunomodulation mechanism represents a 

convincing hypothesis supporting the growth promotion effect of AGPs [57]. Different 

antibiotics exert different extents of inhibitory effects on the immune system. For instance, 

the immunomodulatory effect of florfenicol appears to be less pronounced than for oxalinic 

acid and oxytetracycline [56]. AGP is believed to benefit the animal by limiting the immune 

activation in response to inflammation which is often obligatorily associated with disease 

states [74, 75]. This results in the suppression of pro-inflammatory cytokines, thus preventing 

the initiation of acute-phase response, which is essentially an energy-demanding catabolic 

process. The acute phase response should be avoided at all costs as its activation is 

accompanied by metabolic alteration that leads to reduced feeding and nutrient assimilation, 

which severely compromises animal growth [76, 77].  

Some highly penetrative antibiotics can accumulate in the phagocytic cells reaching 

up to 10- or even 100-fold the ambient concentration [57]. This discrepancy in the 

immunomodulatory effects between different classes of antibiotics may stem from the 

differences in the diffusing potential of each antibiotic into the phagocytic cells [74]. To 

illustrate, clindamycin, macrolides, and quinolones can efficiently diffuse into the 

phagocytes; whereas aminoglycosides and beta-lactams have limited penetrating potential [78, 

79]. Niewold [57] propounded an excellent reference to the intra-phagocytic accumulating 

potential and the phagocytic inhibitory effect for several antibiotics. Accumulated antibiotics 

drive the intracellular killing of pathogens and partly attenuate the innate immune response. 

Notably, the application of antimicrobial agents has been found to impair several downstream 

immunological cascades such as chemotaxis, phagocytosis, respiratory burst, and cytokine 

production [58, 80]. For example, rifamycin was reported to dampen the stress-induced 

inflammation of the intestinal mucosa in the mice model [81]. In-vitro studies using 

immortalized keratinocytes (HaCaT) also demonstrated that low doses of doxycycline at 0.3 

µg/mL resulted in the significant 68.7% suppression of interleukin (IL-8) release when 
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induced by lipopolysaccharide (LPS). A similar trend is noted for other pro-inflammatory 

cytokines such as tumour necrosis factor-alpha (TNF-α) and IL-6 in cells treated with low-

dose doxycycline [82]. Controlling cytokine production is likely to have a pronounced effect 

on growth due to its impact on metabolic homeostasis. Compelling evidence shows that 

proinflammatory cytokines may systematically alter lipid and amino acid intake and 

metabolism rates [77]. 

To sum up, downregulating the immune response has a far-reaching effect on growth. 

Attenuating the immunological cascade would limit the catabolic expenditure in maintaining 

an immune response. Thereby, more resources can be channelled for anabolic activities 

directed toward growth [58, 83]. Moreover, dampening the immune system also reduce the 

accumulation of immune cells in the mucosa. Since the intestinal mucosal is a dynamic layer 

modulating nutrient absorption, metabolic and immunological functions [84], the thinning of 

the intestinal wall helps facilitate the absorption of nutrients [85, 86].  

3. Probiotics  

Probiotics are live microbes introduced deliberately to improve the health of the 

targeted host [87, 88]. Since their inception to farmed animals as feed supplements in the 1970s, 

the growth promotion and disease resistance effects have encouraged their continuous 

implementation in farming [89]. This trend is gradually expanded to the aquaculture industry. 

Besides the disease control and growth enhancement effect, when administered in adequate 

amounts, specific probiotic strains can modulate the host’s gut microbial composition, 

improve water quality, elevate the immune function and increase the animals' survival rate 
[90-97]. These positive reports fueled new interest in research. Increasing evidence suggests 

that probiotic represents a safer and more sustainable alternative to antimicrobial agents in 

farming [29, 36, 37, 98].  

More than 20 genera of microorganisms have been studied for their growth promotion 

effect in shrimp models. Among the probiotics, Bacillus sp. was the most studied and widely 

applied genus in shrimp farming. Table 1 presents a list of microorganisms showing 

promising growth promotion effects in shrimps. The growth promotion effect was evaluated 

using parameters such as SGR, average daily growth (ADG), weight gain rate (WGR), FCR, 

and feed efficiency (FE) [99, 100]. The majority of the strains demonstrated multifaceted 

functions. They represent the up-and-coming candidates to replace AGPs. Further research, 

particularly deciphering the mechanism underlying the growth promotion effect of 

probiotics, is warranted before large-scale commercial implementation. 
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Table 1: Microorganisms demonstrating significant growth promotion effect when introduced as 

probiotics in shrimps. 

 
Probiotics with growth      

promotion effect 
Method of 

Administration 
Dosage 

Frequency and 

duration of trial 

Shrimp 

species 

treated 

Ref. 

Genus Species 

Bacteria 

 

Aeromonas bivalvium Feed additive 107 cells/g diet Daily for 28 d L. vannamei [101] 

 

 

Alteromonas sp. Water additive 106 CFU/mL Daily for 18 d P. monodon [102] 

 

 

Arthrobacter sp. Water additive 
105-107 

CFU/mL 
Every 5 d for 24 d L. vannamei [103] 

 

 

Bacillus amyloliquefaciens 
Water additive 

(mixture) 
109 CFU/mL Once weekly L. vannamei [104] 

 

 

 coagulans Water additive 107 CFU/mL Daily for 35 d L. vannamei [105] 

 

 

 

 

 

 

 Feed additive 
107-109 CFU/g 

diet 
Daily for 56-90 d 

L. vannamei 

 

M. 

rosenbergii 

[95] 

 

[106] 

[107] 

 

 

 

cereus Water additive 106 CFU/mL 
Every 14 d for 

110 d 
L. vannamei [108] 

 

 

 

 Feed additive 104 CFU/g diet Daily for 28 d 
M. 

rosenbergii 
[109] 

 

 

 

  
0.1-0.4 %/100 g 

diet 
Daily for 90 d P. monodon [92] 

 

 

 licheniformis Water additive 
104-109 

CFU/mL 

Once weekly/ 

daily for 8 d 
L. vannamei 

[110] 

[104] 

 

 

 

 

 

 

  Feed additive 
106-109 CFU/g 

diet 
Daily for 60-90 d 

L. vannamei 

 

M. 

rosenbergii 

 

P. monodon 

[111] 

 

[112] 

 

[113] 

  megaterium 
Water additive 

(mixture) 

2 mL/10 L of 

water 

Once weekly for  

9 mo 
L. vannamei [114] 
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 Water additive 

109 cells/mL, 

10 mL to 90 L 

of water 

Every five days 

for 60 d 
P. monodon [115] 

 

 

 

 

 

 Feed additive 

109 CFU/g diet 

104-108 CFU/g 

diet 

Every five days 

for 60 d 

Daily for 28-90 d 

P. monodon 

L. vannamei 

[116] 

[115] 

[111] 

 

 

 

polymyxa 
Feed additive 

(mixture) 
108 CFU/g diet Daily for 90 d L. vannamei [111] 

 

 

 pumilus Water additive 106 CFU/mL 
Every three days 

for 18 d 
P. monodon [117] 

 

 

 

 subtilis Water additive 

109 CFU/mL 

 

109 CFU/L 

Once weekly for 

120 d 

Every three days 

for 14 d 

L. vannamei 

[104] 

 

[118] 

 

 

 

  
2 mL/10 L of 

water 

Once weekly for 9 

mo 
 [114] 

 

 

 

 

 

 

 

 

 

  Feed additive 
104-1012 

CFU/kg diet 
Daily for 28-98 d L. vannamei 

[119] 

[120] 

[116] 

[121] 

[122] 

[123] 

[124] 

[125] 

[33] 

 

 

 

 

 

  
3%, 107 CFU/g 

probiotics 
 

M. 

rosenbergii 

[126] 

[127] 

[90] 

 

 

 

  5 g/kg feed  P. monodon [113] 

  thuringiensis 
Feed additive 

(mixture) 
108 CFU/g diet 

Once-daily for  

90 d 
L. vannamei [111] 
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Bifidobacterium bifidum 

Enrich live feed 

(rotifer) 

(mixture) 

0.43 mg/mL 

(6h) 

109 cells/g 

probiotics 

Daily for from 

mysis I to 

postlarvae 5 

L. vannamei [128] 

 

 

  
Water additive 

(mixture) 

109 cells/L of 

water 
  [128] 

 

 

 

 

 

 

 

Clostridium butyricum Feed additive 
108-14 CFU/g 

diet 
Daily for 42-60 d 

L. vannamei 

 

 

M. 

rosenbergii 

 

Marsupenaeu

s japonicus 

[129] 

[130] 

 

[131] 

[132] 

 

[133] 

 

 

Enterobacter hominis Feed additive 107 CFU/g diet Daily for 28 d L. vannamei [134] 

 

 

 

Enterococcus faecium 

Enrich live feed 

(rotifer) 

(mixture) 

0.43 mg/mL 

(6h) 

109 cells/g 

probiotics 

Daily for from 

mysis I to 

postlarvae 5 

L. vannamei [128] 

 

 

 

  
Water additive 

(mixture) 

1g/L of water 

109 cells/g 

probiotics 

 L. vannamei [128] 

 

 

 

 

   

107 CFU/mL 

added = 

Approximately 

200 µL/100 

postlarvae 

Twice daily P. monodon [135] 

 

 

  Feed additive 107 CFU/g feed Daily for 28 d L. vannamei [136] 

 

 

 

 

   

107 CFU/mL 

added = 

Approximately 

200 

µL/100postlarve 

 P. monodon [135] 

 Halomonas aquamarine Water additive 
106 CFU/mL, 

0.1% v/v 
For 12 d L. vannamei [137] 
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 sp. 
Enrich live feed 

(Artemia) 

300 mg/L (24h) 

8 naupii/mL/day 

for 15 days 

  [138] 

 

 

  Water additive 107 CFU/mL   [139] 

 

 

  Feed additive 107 CFU/g feed Daily for 42 d 
Fenneropenae

us chinensis 
[140] 

 

 

 

Lactobacillus acidophilus 

Enrich live feed 

(rotifer) 

(mixture) 

0.43 mg/mL 

(6h) 

109 cells/g 

probiotics 

Daily for from 

mysis I to 

postlarvae 5 

L. vannamei [128] 

 

 

 

 

  Water additive 

107 CFU/mL 

1 g/L of water 

109 cells/g 

probiotics 

Daily for 35 d  

[105] 

 

[128] 

 

 

  
Feed additive 

(mixture) 
5 g/kg feed Daily for 60 d P. monodon [113] 

 

 

 coagulans Feed additive 108 CFU/g feed Daily for 56 d L. vannamei [95] 

 

 

 fermentum 
Water additive 

(mixture) 

2 mL/10 L of 

water 

Once weekly for  

9 mo 
 [114] 

 

 

 

 delbrueckii 

Enrich live feed 

(rotifer) 

(mixture) 

0.43 mg/mL 

(6h) 

109 cells/g 

probiotics 

Daily for from 

mysis I to 

postlarvae 5 

L. vannamei [128] 

 

 

 

  
Water additive 

(mixture) 

1 g/L of water 

109 cells/g 

probiotics 

  [128] 

 

 

 pentosus Feed additive 
107-109 CFU/g 

feed 
Daily for 28-56 d L. vannamei 

[136] 

[125] 

 

 

 

 plantarum 

Enrich live feed 

(rotifer) 

(mixture) 

0.43 mg/mL 

(6h) 

109 cells/g 

probiotics 

Daily for from 

mysis I to 

postlarvae 5 

L. vannamei [128] 

   
Water additive 

(mixture)3 

1 g/L of water 

109 cells/g 

probiotics 

 L. vannamei [128] 
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2 mL/10 L of 

water 

Once weekly for  

9 mo 
L. vannamei [114] 

 

 

   109 CFU/L Daily for 90 d 
M. 

rosenbergii 
[141] 

   Feed additive 
107 -1012 CFU/g 

feed 
Daily for 21-90 d 

 

L. vannamei 

M. 

rosenbergii 

 

[142] 
[143] 

[144] 

 

 

 

 rhamnosus 

Enrich live feed 

(rotifer) 

(mixture) 

0.43 mg/mL 

(6h) 

109 cells/g 

probiotics 

Daily for from 

mysis I to 

postlarvae 5 

L. vannamei [128] 

 

 

 

  
Water additive 

(mixture) 

1 g/L of water 

109 cells/g 

probiotics 

Daily for 45 d L. vannamei [128] 

 

 

 sporogenes 
Enrich live feed 

(Artemia) 

107 CFU/L 

(12h) 
 

M. 

rosenbergii 
[145] 

 

 

 

  
Feed additive 

(mixture) 

3-4% in the diet, 

107 CFU/g 

probiotics 

Daily for 60 -90 d 
M. 

rosenbergii 

[126] 

[90] 

 

 

   5 g/kg feed Daily for 60 d P. monodon [113] 

 Lactococcus lactis Feed additive 108 CFU/g diet Daily for 56 d L. vannamei 

[146] 

[33] 

 

 

 

 

 

 

 

Nitrobacter sp. 

Water additive 

(mixture) 

 

2 mL/10 L of 

water 

106 cells/mL 

3 mg/L every 16 

d for 12 weeks, 

then 5 mg/L till 

the end of the 

culture 

Once weekly for  

9 mo 
L. vannamei 

[114] 

 

[147] 

 

 
Nitrosomonas sp. 

Water additive 

(mixture) 

2 mL/10 L of 

water  L. vannamei 

[114] 
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2mL/10 L of 

water 

Once weekly for 

nine months 

106 cells/mL 

3 mg/L every 16 

d for 12 weeks, 

then 5 mg/L till 

the end of the 

culture 

[147] 

 

 

Pediococcus acidilactici Water additive 106 CFU/mL 
Every 14 d for 

110 d 
L. vannamei [108] 

 

 

  
Feed additive 

(mixture) 
108 CFU/g diet Daily for 60 d 

M. 

rosenbergii 
[148] 

 

 

 pentosaceus Feed additive 108 CFU/g diet Daily for 65 d L. vannamei [149] 

 

 

Pseudomonas aestumarina Feed additive 105 CFU/g diet 
Once-daily for  

28 d 
L. vannamei [119] 

 

 

 

 sp. 
Water additive 

(mixture) 
109 CFU/mL Daily for 15 d L. vannamei [104] 

 

 

Psychrobacter sp. Water additive 105 CFU/mL Once weekly L. vannamei [150] 

 

 

Rhodopseudomo

nas 
palustris Water additive 107 CFU/mL Daily for 35 d L. vannamei [105] 

 

 

Roseobacter gallaeciensis Feed additive 105 CFU/g diet 
Once-daily for  

28 d 
L. vannamei [119] 

 

 

Shewanella algae Water additive 
105 CFU/mL, 

0.1% v/v 
For 12 d L. vannamei [137] 

 

 

 haliotis Feed additive 107 cells/g diet Daily for 28 d L. vannamei [101] 

 

 

 sp. Feed additive 107 cells/g diet Daily for 56 d L. vannamei [96] 

 

 

 

Streptococcus phocae Feed additive 

107 CFU/mL of 

probiotics 

200 mg/100 

post larvae 

 P. monodon [135] 

   Water additive 

107 CFU/mL 

added 

=Approximately

200 µL/100 post 

larvae 

Twice daily  [135] 
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 salivarius 

Enrich live feed 

(rotifer) 

(mixture) 

0.43 mg/mL 

(6h) 

109 cells/g 

probiotics 

Daily for from 

mysis I to 

postlarvae 5 

L. vannamei [128] 

 

 

 

  
Water additive 

(mixture) 

1g/L of water 

109 cells/g 

probiotics 

 L. vannamei [128] 

 

 

 

Streptomyces fradiae Water additive 

109 cells/mL, 

10 mL to 90 L 

of water 

Every 5 d for 60 d P. monodon [115] 

 

 

  Feed additive 109 cells/g feed 
Every five days 

for 60 d 
P. monodon [115] 

 

 

Vibrio alginolyticus Feed additive 105 CFU/g diet 
Once-daily for  

28 d 
L. vannamei [119] 

Yeast Debaryomyces hansenii 
Feed additive 

(mixture) 
108 CFU/g diet 

Once-daily for  

90 d 
L. vannamei [111] 

 

 

Rhodotorura sp. 
Feed additive 

(mixture) 
108 CFU/g diet 

Once-daily for  

90 d 
L. vannamei [111] 

 

 

 

 

 

 

 

Saccharomyces cerevisiae 

Feed additive 

4% in the diet, 

107 CFU/g 

probiotics 

Daily for 60 

days 

108 CFU/g diet 

 

3-4% diet, 107 

CFU/g 

 

 

10-40 g/kg diet 

Daily for 60-90 d 
M. 

rosenbergii 

[148] 

 

[126] 

[127] 

[151] 

[90] 

 

 

   5 g/kg feed Daily for 60 d P. monodon [113] 

*Mixture means the probiotics contain more than one microorganism. 
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4. Mechanism of probiotics in promoting animal growth  

The growth promotion effect of probiotics is postulated to be driven by several 

factors. The mechanisms may vary from strain to strain, and the exhibited effect may vary 

when introduced to different animals [152]. Based on the empirical observational approaches, 

several events demonstrated strong correlations to growth. This includes the alteration to the 

gut microbiota composition, elevation of enzymatic activities, modification of the 

hepatopancreatic and intestinal morphology, enhancement of immune function, and 

modification of genes expression [90, 134, 153-155]. In startle contrast to AGPs, probiotic 

administration was found to strengthen the immune function of the animals. Besides, 

probiotics also help to increase animals’ resistance to environmental stressors, including 

ammonia and oxidative stress, by ameliorating the water quality. This implies that more 

underlying mechanisms that may contribute to animal growth are yet to be elucidated. This 

review synthesizes a summary of the underlying mechanisms of probiotics in promoting 

animal growth based on the available studies involving shrimp models. The growth 

promotion mechanisms of probiotics are then compared and contrasted with AGPs to 

generate new insights to propel the pursuance of better growth-promoting agents for shrimp 

farming (Table 2). 

5. Modulating the gut microbiome  

Gut microbiota composition is recognised as one of the key determinants for the 

normal function and maintenance of the digestive tract structure of the host [156, 157]. Due to 

their pivotal roles and the high collective metabolic activity in the gut, the indigenous 

microbiota is also regarded as another virtual organ within the gut [158, 159]. These microbes 

co-evolve with the host along the long evolutionary process. A mutualistic relationship exists 

between these bacteria and the host [160-162]. To illustrate, the gut microbiota plays vital roles 

adjunctive to the gut, particularly in homeostasis maintenance, immune regulation, energy 

distribution, nutrient absorption, and storage [163-166]. In this regard, the involvement of the 

gut microbiota is likely indispensable to the growth promotion effect of probiotics. Probiotics 

increase the proportion of beneficial microbes in the gut and help maintain a healthy and 

functioning gut microbiota.  
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Table 2: Compare and contrast the mechanisms of AGPs and probiotics in promoting animal growth. 

Mechanisms 

affecting the 

growth of 

animals 

Antimicrobial Growth Promoters Probiotics 

Gut microbiota 

• Reduce the gut microbiota diversity 

• Reduce the abundance of gut 

bacteria 

• Increase the proportion of bacteria 

that promotes growth 

 

 

• Increase the gut microbiota diversity 

• Increase the ratio of beneficial microbes 

to pathogenic microbes without 

significant changes to the total abundance 

of gut bacteria 

• Establish a healthy and functioning gut 

microbiota 

 

Enzymatic 

activity 
• No significant alteration 

 

• Enhance the enzymatic activities 

• Enhance nutrient digestibility 

 

Gastrointestinal 

tract 

morphology 

• Reduce the muscularis wall 

thickness 

 

 

• Increases the number of B cells in the 

hepatopancreas 

• Lower the degree of atrophy and necrosis 

in the hepatopancreas and midgut (during 

infection) 

• Increase epithelial integrity 

• Increase the size of epithelial cell 

• Increase the villus number and height 

Increase the surface area of the inner 

surface of the intestine 

 

Immune system 

 

• Attenuate the immune system 

• limit the immune activation in 

response to inflammation 

• impair immunological events such 

as chemotaxis, phagocytosis, 

respiratory burst and cytokine 

production 

 

 

• Prime the immune system 

• Strengthen the protective mechanism 

• Elevate the inhibitory capacity against 

pathogens 
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5.1. Increasing the proportion of beneficial bacteria   

It is well established that dietary factors could modulate an organism's gastrointestinal 

microbial community composition [8, 96, 164, 167-174]. Alteration to the gut microbiota 

composition of aquatic animals following probiotic supplementation has been well 

demonstrated [38, 61, 175-177]. Contrary to the action of antibiotics in reducing the bacteria 

population and diversity in the gut [10, 178, 179], probiotics often only alter the composition of 

the gut microbiota without significantly affecting the total abundance of the gut microflora 
[153]. The gut microbiome of probiotic-treated groups generally demonstrates higher species 

richness and biodiversity [61, 94]. This is reflected in the higher number of operational 

taxonomy units (OTUs) as well as the higher abundance-based coverage estimators (ACE), 

Shannon, Chao-1, and McIntosh indexes in the probiotic treatment groups [94, 134, 180]. The 

diversity of the microbial community could also be analysed based on the variety of carbon 

sources available in the gastrointestinal tract of shrimps using the Biolog-ECO technique. 

This parameter can also be employed to index the aerobic metabolism rate [134, 180]. Using this 

method, Zuo et al. [134] demonstrated the elevated intestinal microbiome activity through the 

significant increase in average colour change rate per hole (AWCD) in cohorts supplemented 

with probiotics Lactobacillus and Enterobacter hormaechei. Polymerase Chain Reaction - 

Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis also revealed the 

incorporation of Bacillus spp. probiotics into the feed enriched the individual variation and 

total diversity of intestinal bacteria in Kuruma shrimps (Marsupenaeus japonicus) [181]. This 

result is consistent with the single-strand conformation polymorphism (SSCP) fingerprint 

analysis which shows higher intestinal bacteria diversity in L. vannamei following the 

administration of Bacillus spp. probiotics [61]. 

Interestingly, some probiotic strains seem to exert a selective action towards different 

microbial species. Probiotics introduced were observed to increase the abundance of 

beneficial bacteria in the gut and suppress the growth of pathogenic strains. Notably,  adding 

a  probiotic mixture of Bacillus subtilis and Saccharomyces cerevisiae together with 

prebiotics (mannan oligosaccharides and ß-glucan) into the shrimp diet significantly 

increased the Lactococcus count in the gastrointestinal tract by 11% and depressed the 

pathogenic Vibrio population by 32% when compared with the untreated group [182]. Along 

this line, a shift in the microbiota composition of L. vannamei was evident through the 

increment in beneficial bacteria Pseudoalteromonas sp. proportion and depression of Vibrio 

sp. in the group fed 2% dietary yeast (S. cerevisiae) culture [183]. This is consistent with the 

findings of Nimrat et al. [153], who noted the addition of Bacillus spp. and yeast probiotic mix 

to L. vannamei increases the ratio of beneficial bacteria species such as Bacillus spp. and 

Debaryomyces hansenii without altering the total number of culturable heterotrophic bacteria 

in the gut. This implies that probiotics can enhance the gut ecosystem without adversely 

affecting the equilibrium of the natural microflora. 

Similarly, Wei et al. [96] also reported that beneficial Pseudomonas sp. increased 

proportionally. In contrast, pathogenic species such as Bacteroides and Escherichia shigella 

decreased in abundance following the eight-week probiotic Shewanella sp. dietary 
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supplementation trial. This particular activity is harnessed when the probiotics are introduced 

to enhance the proliferation of beneficial strains, suppress the growth of pathogenic strains 

and mitigate the risk of animals succumbing to infectious diseases. This 

protectivemechanism demonstrated by probiotics contrasts with antibiotics, in which the 

bactericidal activity may create free ecological spaces for other opportunistic pathogens to 

thrive post-treatment [56, 178]. In this regard, the colonisation of probiotics is a plus point as 

these beneficial microbes readily occupy the ecological niches and mitigate the colonisation 

of opportunistic strains, thus prolonging the desirable effects of the treatment [33] (see Section 

5.3).  

5.2. Establishment of a healthy gut microbiota  

From another perspective, it is postulated that probiotics promote the growth of 

shrimps by establishing a healthy gut microflora [39]. Although positive correlations between 

several bacteria phyla and the health indices of the host have been identified [184], hitherto, 

there is no definite microbiota pattern that can conclude the ‘desired microbiota’ which 

favours animal growth. Several significant hurdles stumble research in this aspect. Firstly, 

because only a tiny fraction of bacteria is currently culturable under lab environment, a 

substantial fraction of the intestinal microbiota remains unknown. Although advances in 

molecular techniques offer descriptive data, without representative culturable strains to 

support further studies, the internal processes, mechanisms, and interactions between the 

microbiota and the host remain speculative [185]. Secondly, the gut microbiota constitutes a 

dynamic and highly complex ecosystem involving the interplay of a wide array of bacteria 

species. These bacteria interact with one another differently, some strains antagonize the 

growth of another, while others support the growth of others [134, 186]. Thirdly, the gut 

microbiota composition is further compounded by external factors such as individual 

variations, developmental stages, feeding, stress, and environmental fluctuations [58, 187-190]. 

Regardless, a healthy microbiome can generally be characterised as a healthy and functioning 

core comprising a stable yet flourishing blend of microbe species actively involved in 

physiological regulatory pathways and could ably resist any external or internal perturbations 
[188, 191-194]. Recent findings suggest the involvement of commensal microbiota in modulating 

the host’s metabolism, digestibility, and immune response [184, 195-197]. This further reinforces 

the idea that the gut microbiota is closely associated with regulating the host’s growth 

performance [61, 180, 198]. This notion justifies that applying probiotic supplements can 

modulate gut microbiota composition to enhance the attainment of better health status and 

boost the growth performance of cultured shrimps [180, 198].   

The microbiota modulated by AGPs could not provide a good reference for the 

‘desired microbiota template’; similar to the case of probiotics, antibiotics also resulted in 

inconsistent effects on the gut microbiota despite the proven growth promotion effect [56, 58]. 

However, significant changes in gut microbiota composition following the addition of 

probiotics is discernable when compared to the untreated controls [38, 175-177]. Luis-Villaseñor 

et al. [61] show that shrimps treated with two different probiotics exhibited a high percentage 

similarity (73%) in gut microbiota composition. Still, both only show a 24% similarity to the 
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untreated control group [61]. This indirectly implies that empirical observational studies may 

offer glimpses of the desired gut microbiota pattern that reinforces growth. Studies 

consistently showed that Proteobacteria is the most abundant phylum in shrimps’ intestines, 

followed by Firmicutes, Bacteriodetes, and Actinobacteria [94, 96, 176, 180, 198-201]. α-

proteobacteria, γ-proteobacteria, and flavobacteria are the dominant classes identified in 

shrimps regardless of the treatment type [180]. 

Interestingly, Duan et al. [180] discovered that probiotics exert a dose-dependent 

influence on gut microbial composition. A higher Clostridium butyricum dietary 

supplementation enriched the Proteobacteria phylum and Firmicutes, whereas a lower 

probiotic dose increased the dominance of Bacteriodetes and Firmicutes. In contrast to the 

untreated counterparts, the probiotic-treated group demonstrated a broader diversity of 

microbes [186]. Xie et al. [94] also showed that introducing different graded probiotics 

contributed to the selection of unique bacterial compositions. Clearly, it is rather difficult to 

reconcile the complex microbiome analysis currently accumulated in the arsenal. The 

advancement in metagenomics and bioinformatics will eventually foster the pursuit of a 

unifying principle from the infinite paradigms of microbiota resulting from different 

probiotic treatment regimes.  

At this juncture, the microbiota of healthy shrimps with high growth rates at different 

growth phases or stocking densities could serve as good references [200, 201]. Otherwise, 

insights could also be drawn from other animal models or clinical trials. An increasing 

number of studies relate the weight changes to the proportion of two prominent phyla in the 

gut, namely Bacteriodetes and Firmicutes. A higher ratio of Firmicutes to Bacteroidetes is 

hypothesised to contribute to weight gain through the shift in metabolic potential viz the 

increment in calories and fats absorption [202-205]. This result has also been consistently 

demonstrated in mice models [67, 206]. Nevertheless, a better understanding of the gut 

microbiome and its interaction with the host is warranted so that suitable probiotic 

supplementation could be designed to shape the desired microbiota to optimise animal health 

and growth [61, 188]. Although it is unlikely to draw a simplistic conclusion on the ‘desired 

microbiota that promote growth’ based on the varying results gathered from the available 

studies, the approach presented may help pave a preliminary path that could guide future 

research.  

5.3 Establishment of a functioning gut microbiota  

The protective mechanism of the gut is strengthened via the introduction of probiotics. 

Probiotics competitively exclude opportunistic pathogens from adhering to the gut lining and 

reduce the availability of space, nutrients, and energy that supports the proliferation of 

pathogenic strains [207, 208]. For example, yeast strains, such as D. hansenii, demonstrated 

higher dominance traits in the gut and competitively excluded other strains [153, 209, 210]. 

Besides, studies consistently show that introducing Bacillus probiotics substantially reduced 

the Vibrio count in the digestive tract of shrimps compared to the probiotic-free group. This 

corroborated with the growth suppression of potential pathogens such as Desulfobulbus sp. 
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and Desulfovibrio sp. when beneficial bacteria such as Lactobacillus sp., Lachnospiraceae 

sp., and Lachmoclostridium sp. were enriched following supplementation of C. butyricum 
[180]. The correlation of this protective effect to growth performance and survival rate post-

infection has also been established [211, 212]. Moreover, some probiotic strains are equipped 

with the potential to antagonise pathogenic microbes through quorum quenching [213, 214]. 

Probiotics suppress the virulence expression of pathogens through the degradation of 

signalling molecules such as N-acyl homoserine lactone (AHL) [109, 215-217]. Quantitative 

polymerase chain reaction (qPCR) results showed that administering Pseudomonas sp. 

probiotics effectively lower the toxin-coding gene pirAvp copies in shrimps [218]. In addition, 

some bacteria also secrete inhibitory compounds such as siderophores, proteases, lysozymes, 

hydrogen peroxide, organic acids, antibiotics, and bacteriocins that antagonise the growth of 

pathogens [31, 37, 113, 212, 219, 220].  

Also, probiotics promote the re-establishment of normal flora in shrimps, particularly 

when dysbiosis is prevalent at the subclinical stages [188, 221]. In this sense, probiotics 

strengthen the barrier effects of gut microbiota against pathogenic microorganisms (see 

Section 8.2) and act as an additional line of defence to preserve the epithelial integrity of the 

gut [222, 223]. This protective effect potentially mitigates the risk of infection, reducing energy's 

unnecessary dissipation in eliciting an immune response to combat diseases [61]. In this sense, 

the energy obtained is reserved for growth and other basal life processes. 

Although a direct comparison between probiotics and antibiotics is lacking, Won et 

al. [33] reported that shrimps fed probiotics demonstrated comparable survival rates to that fed 

oxytetracycline, which is significantly higher than the cumulative survival rates of the 

untreated control. Similarly, L. vannamei larvae exposed to Bacillus probiotic strains and 

commercial probiotics showed better development rates than the control group. On top of 

that, mixing both Bacillus strains YC3-b and C2-2 at a 1:1 ratio resulted in a significantly 

better developmental rate when compared to the larvae exposed to antibiotics oxytetracycline 
[34]. 

6. Secretion of bioactive compounds  

Probiotic application stimulates the secretion of a wide range of bioactive compounds 

such as short-chain fatty acids (SCFAs), vitamins, polyamines, and exopolysaccharides [224, 

225]. These bioactive molecules promote the functional maturation of the intestine, enhance 

protein and nucleic acids biosynthesis, improve nutrient absorption and facilitate cell 

differentiation [153, 226]. Bacillus sp. [227-231], Streptomyces sp. [232-234], lactic acid bacteria [207, 

235-237], as well as yeast [238], are some common probiotic examples known for their proliferate 

secretion of bioactive compounds. These compounds serve as growth factors to stimulate 

animal growth [8, 239-244]. They may act as critical supplementary sources of beneficial dietary 

compounds and constitute part of the sustenance for the animal. Probiotics can be introduced 

as aquafeed additives to improve feed value [207, 245]. Several studies demonstrated the 

efficiency of probiotic supplementation in lowering the FCR, which correlated with 

significant weight improvement of shrimps [95, 114, 240, 246, 247].  



PMMB 2023, 6, 1; a0000324 21 of 86 

 

6.1. Short-chain fatty acids  

Like most organisms, shrimps lack the necessary enzymes to digest resistant starches 

and complex polysaccharides. They, therefore, depend on the gut microbiome to decompose 

fibrous nutrient or complex carbohydrate molecules into pyruvate and acetyl-CoA via the 

glycolytic pathway or the phosphoketolase route [199, 248] (Figure 2). These ‘intermediate 

substrates’ are later converted into SCFAs through other gut processes mediated by different 

microbes [195, 199, 248-252]. SCFAs are carboxylic acids with less than six carbons at the aliphatic 

tails. They are the primary end products of bacterial fermentation of the non-digestible dietary 

carbohydrates ingested by the host [195, 253, 254]. However, the exact species facilitating each 

SCFA production pathway in shrimp is yet to be identified to allow targeted control of the 

metabolic profile of shrimp through the introduction of specific probiotic strains.  

 

Figure 2. Formation of SCFAs and their effects on shrimps. 
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SCFAs are important bioactive molecules produced from bacteria fermentation. It is 

well known that SCFAs play important roles in several physiological processes, including 

metabolism and immune defences [255]. SCFAs can mediate physiological activities through 

the modulatory effect on the digestive tract or directly affect the metabolism rate [256, 257]. 

SCFAs are akin to the link between the gut microflora, diet, and host metabolism [258]. They 

provide energy sources, help maintain gastrointestinal homeostasis, and act as immune 

modulators and anti-inflammatory agents [195, 259]. In this sense, SCFAs constitute a pivotal 

point in explaining the growth promotion effects of probiotics (see Figure 2). As described 

in Section 5.1, probiotic introduction alters the gut microbiota composition, subsequently 

altering the host's SCFA content and metabolic profile. SCFAs such as acetate, butyrate, 

propionate, and their salts have common existence in the shrimps’ intestines [199, 260]. Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) pathway integrity and genes enrichment 

analysis mapped on pyruvate metabolism revealed that acetate was the primary type of SCFA 

found in the gastrointestinal tract of L. vannamei [199]. This corroborated the findings of Duan 

et al. [129].  

SCFAs can be perceived as a form of energy recovered by the gut microbiota for host 

absorption. SCFAs are easily absorbed and constitute an essential energy source to drive 

cellular processes such as chemotaxis, cell proliferation, and differentiation [225, 254, 255, 261-263]. 

The proliferation of the epithelial cells lining the intestinal mucosa and the increment in cell 

size, villus height, and villus number thus, contribute to a larger surface area for better 

nutrient absorption [86, 133, 239, 264, 265]. Furthermore, SCFAs can act as signal transduction 

molecules that modulate mucin expression and the tight junctions of the epithelial cells, 

thereby improving gut permeability and enhancing nutrient absorption [195, 225, 253, 266]. 

Moreover, the reduction of intestinal pH induced by SCFAs also significantly improves the 

enzymatic activities of amylase, pepsin, trypsin, and lipase compared to the untreated control, 

thus implying better nutrient digestive ability [267]. Significant growth augmentation was 

discernible with increasing SCFA concentration [268, 269]. SCFAs effectively improve the feed 

efficiency (FE), protein efficiency rate (PER), digestibility, nitrogen retention, weight gain, 

development, and survival rate of shrimps. The positive results seem to be consistently 

proven across different shrimp species tested, including L. vannamei [268-271], P. monodon [272, 

273], and M. rosenbergii [274]. For example, butyrate increased the bioavailability of several 

nucleotide derivatives and essential amino acids [239]. 

The provision of SCFAs as fuel may lower amino acid and glucose oxidation, thereby 

conserving energy for growth and other physiological processes [239]. Besides that, SCFA is 

intimately involved in regulating lipid metabolism and maintaining intestinal health [275, 276]. 

Evidence suggests that SCFA can activate the AMP-activated protein kinase (AMPK) 

directly or indirectly [277]. AMPK serves as an energy gauge and a chief regulator for cellular 

metabolic homeostasis [278, 279]. Upon activation, AMPK inactivates the enzymes such as 

acetyl-CoA carboxylase (ACC) and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which 

catalyse the fatty acid and cholesterol biosynthesis, thus limiting the energy-consuming 

biosynthesis pathways and promoting the ATP-producing catabolic processes [277, 280, 281]. 
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Dissociation of SCFAs lowers the pH, alters the transport mechanism, and affects the 

chelating potential of minerals. Thus, SCFAs elevate dietary minerals like calcium, 

phosphates, and other trace elements available to the shrimp. Precipitation is reduced when 

these acids chelate with mineral ions, thereby increasing the absorption of minerals in the 

intestine [239, 254, 269]. The calcium and zinc levels increase favours the calcium/calmodulin-

dependent protein kinase/AMPK (Ca2+/CaMKKß/AMPK) pathway in shrimps and 

promotes growth [282].  

In addition, the proliferation of opportunistic pathogens may also be suppressed by 

the acidic environment created by SCFAs [239, 283]. SCFAs can diffuse through the bacterial 

cell wall and dissociate to release protons, thereby triggering the efflux mechanisms to expel 

the excess intracellular protons in the pathogenic bacteria. This culminates in cell exhaustion, 

thus resulting in lower growth and even the death of pathogenic bacteria [129, 284, 285]. In other 

words, a low pH microenvironment in the gut antagonises the proliferation of pathogens such 

as Vibrio sp. and stabilizes the gut microbiota to promote animal health and growth 

performance [184, 195, 239, 268, 269]. Besides, the oxidative actions triggered by the binding of 

SCFA to its respective receptor for metabolic activities resulted in a low oxygen environment 

that restrained the growth of pathogens [243, 286]. The introduction of acetate [269], poly-ß-

hydroxybutyrate [274], and sodium propionate [268, 269] significantly reduce the Vibrio count in 

the gastrointestinal tract of shrimps. An intriguing relationship exists between SCFAs and 

guts microbial composition, where SCFAs could modify the intestinal microbiota 

composition and vice versa [268, 269].  

Last but not least, SCFAs also improve the immunity of shrimps by regulating the 

immune genes and augmenting the immune components [195, 239] (see Section 9). For example, 

60 days of propionic acid supplementation up-regulated the expression of prophenoloxidase 

(PO), crustin, penaeidin-3a (pen-3a) and lysozyme in the hepatopancreas of L. vannamei [287]. 

Likewise, the dietary inclusion of a 2% organic acid blend significantly increased the 

shrimp’s survival rate post-challenged with Vibrio harveyi. Treated shrimps demonstrated a 

lower degree of hepatopancreatic damage when infected with V. harveyi, which corresponds 

to a higher PO activity [270, 273]. Although the mode of action of SCFAs in modulating the 

shrimps' immunity is yet to be verified by further mechanistic studies, the results available 

support SCFAs as effective immune stimulators for aquatic animals [239, 254, 288, 289]. The 

significantly elevated serum agglutination titre in L. vannamei fed propionate and butyrate 

further attested to the immunomodulatory effect of SCFAs [268].  

To sum up, SCFAs are important bioactive molecules for shrimps in mediating energy 

production, controlling digestive function, modulating gut microbial composition, dictating 

disease resistance, and regulating the immune response. Interestingly, the introduction of 

sodium propionate significantly suppressed the expression of the myostatin (mstn) gene and 

elevated the expression of the appetite-related gene, ghrelin (ghrl) (see Section 10) and the 

growth-regulating genes such as growth hormone (GH) and insulin-like growth factor (IGF-

1) [254] which favour shrimps’ growth. Irrefutably, SCFA is one of the critical substrates 

affecting shrimps’ survival rate and growth performance. The growth promotion effect of 
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probiotics can be explained through these bioactive molecules as probiotic inclusion has been 

proven to positively increase the SCFA concentration in the intestine [155, 188, 290, 291]. 

Therefore, SCFA-producing bacteria could be harnessed to enhance shrimps' growth and 

survival rate.  

6.2. Vitamins  

Another essential type of compound produced by probiotics is vitamins. For example, 

probiotic bacteria C. butyricum can directly produce vitamin B in the intestinal tract [129, 292]. 

Vitamins are groups of heterogenous compounds crucial for the growth and well-being of an 

organism, including shrimps. Unlike the major nutrient sources such as proteins, lipids, or 

carbohydrates, vitamins are only required in trace amounts. The vitamin requirement of 

shrimps is affected by multiple factors, including animal species, culture system, growth rate, 

physiological condition, nutrient composition, and feeding behaviour [293-295]. Although the 

vitamin requirements of shrimp seemed to vary between studies, likely due to the various 

factors described above, the significance of vitamins to penaeid shrimps has long been 

established [295, 296].  

Vitamin availability is closely associated with aquatic animals’ growth performance 
[31, 297]. For example, vitamin B is key player in metabolism and antioxidative mechanisms 
[293, 298-300]. The B complexes, such as vitamin B1 (thiamine), vitamin B5 (pantothenic acid), 

vitamin B6 (pyridoxine) and vitamin B12 (cobalamin), are also intimately involved in protein, 

lipid and carbohydrate metabolism [244, 295, 301, 302]. Vitamin B1 acts as a co-factor that catalyze 

the cleavage of α-keto acids such as pyruvic acid in producing energy-storing molecules, 

adenosine triphosphate (ATP) [244, 303]. Vitamin B6 participates in several metabolic reactions 

by acting as a prosthetic group of enzymes in the form of pyridoxal phosphate [301]. Elevation 

of the glutamic pyruvic transferase (GPT) and the glutamic oxaloacetic transferase (GOT) 

activities following vitamin B6 supplementation also attested to its role in regulating protein 

metabolism [302, 304].  Several reports corroborated the dose-dependent effects of vitamin B6 

on the growth performance of shrimps [301, 302]. A similar trend was reported for vitamin B9 

(folic acid), vitamin B12 (cobalamin), vitamin C and vitamin E [305-308]. A significantly higher 

growth rate of P. monodon was attained in groups supplemented with vitamin B9 compared 

to the non-supplemented group [306]. Vitamin B9 is a precursor for the active tetrahydrofolate 

coenzymes, which are essential for nucleotide and amino acid metabolism reactions [306, 309]. 

Vitamin C is a powerful antioxidant, potent immunomodulator, and haematological booster 

for shrimps [305, 310-314]. Vitamin E is an effective antioxidant, offering protection against the 

ascorbic acid-driven lipid peroxidation in cellular membranes, muscles and hepatopancreas 
[308]. Clearly, vitamins are micronutrients essential for the shrimp’s proper growth and 

survival.  

In addition to that, dietary vitamin supplementations can effectively suppress 

infectious diseases in the treated cohort. Although the information on shrimps is meagre, the 

results cross-referenced from other species demonstrated the phenomena. For instance, 

dietary inclusion of vitamin C at 1,000 mg/kg of feed to three-day-old hatchings of the mrigal 
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carp (Cirrhinus mrigala) significantly flattened the mortality curve when challenged with 105 

Aeromonas hydrophila cells per fish at the end of the four-month trial. Moreover, vitamin C 

supplementation was found to quicken the phagocytic infiltration rate, thus resulting in 

minimal lesion at the injection site and culminating in complete resolution on day nine 

following the challenge test [315]. Similarly, supplementing vitamin C was found to effectively 

reduce the mortality rate of Wuchang bream (Megalobrama Amblycephala) [316] and striped 

catfish (Pangasianodon hypophthalmus) [317] when confronted with A. hydrophila. Besides, 

cholecalciferol, the inactive form of vitamin D3, has been proven as an ideal feed additive for 

Atlantic Salmon (Salmo salar), particularly to harness its effect in resisting Aeromonas 

salmonicida infections [318]. Vitamin E dietary inclusion in the form of α-tocopheryl acetate 

increases the immune response and resistance of the Parrotfish (Oplegnathus fasciatus) 

against Vibrio anguillarum infection [319]. This result corroborates with the findings of Chen 

et al. [320], where adding 300 mg of α-tocopheryl acetate and 6% fish oil enhances the 

resistance of Chinese mitten crab (Eriocheir sinensis) to A. hydrophila. Most importantly, 

vitamin E supplementation was found to improve the specific growth rate of the crab 

substantially.  

Although only required in trace quantity, inadequate vitamin supply can negatively 

affect animal development and may indirectly impact the production cost [237, 321]. Vitamins, 

including water-soluble and fat-soluble vitamins, are considered essential for the health 

maintenance of shrimps. Previous works studied the vitamins required and the suggested 

dietary intake for different shrimp species [295, 296, 322-324]. The recommended dosage and 

deficiency signs for each vitamin required by penaeid shrimps are deciphered in Figure 3. 

Vitamin deficiency may lead to reduced appetite, poor feed conversion efficiency, growth 

reduction, swollen hepatopancreas, decreased activity, body discolouration, improper 

molting, poor healing, increased susceptibility to stress and infectious diseases, as well as 

high mortality rates among the shrimps [261, 293, 298, 308, 323]. It is important to note that 

crustaceans have limited physiological ability to synthesise vitamins [31, 325]. Besides being 

supplemented through dietary intake, vitamins are supplied by the mutualistic biota residing 

in the gut and the rearing water [224, 306, 326]. However, information on the gut microbiota 

production of vitamins in shrimps is scanty [244, 306].   
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Figure 3. The function, recommended dosage and deficiency signs of vitamins required by penaeid shrimps. 

Acknowledging the vitamin synthesizing capacity of the gastrointestinal bacteria as a 

determining factor for the bioavailability of vitamins [295],  probiotics can, thus, be perceived 

as a supplementary source of vitamins for the optimal growth of the animals. It is proven that 

introducing probiotic strains such as Lactobacillus sp., Bifidobacterium sp., and 

Propionibacterium sp. can significantly elevate the production of vitamins [236, 327-329]. These 

bioactive molecules serve as growth factors for the gut microbial community and render a 

mutualistic effect to the host when the shrimps also take up the exogenous vitamins released 

by the microbes. In this sense, it may be reasonable to relate the growth promotion effect of 

probiotics to the cultivation of a conducive gastrointestinal environment that favours the 

smooth functioning of all metabolic activities via the production of vitamins and other 

important bioactive molecules [224]. 

Since vitamins are among the valuable outputs of probiotics [330], the deliberate 

inclusion of probiotic strains capable of synthesizing the essential vitamins will foster farmed 

animals' healthy development [295, 331]. Furthermore, exploiting probiotic use can help ferment 

the animal feed in-situ and fortify the feed with essential vitamins. Tapping on the vitamin-

sparing effects of probiotics in culture systems may, in turn, substantially lower the feed 

expenditure without compromising the survival and growth rate of shrimps [294]. LeBlanc et 

al. [244] detailed a concise list of microbial strains comprising the food-grade probiotics and 

the commensal strains and their range of vitamin production. An abundance of in-vitro 

studies demonstrated the vitamin biosynthesizing potential of various microbial strains 

isolated from multiple sources (see Table 3). However, most studies evaluated the vitamin 

content in the fermented microbial media under well-controlled laboratory conditions. 
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In contrast, the in-vivo production of the specific vitamin by probiotics or gut 

microbes in shrimps is largely understudied. The high vitamin production in-vitro does not 

necessarily guarantee similar efficacy for vitamin synthesis under treacherous condition in 

the animal’s gastrointestinal tract. This is an evident research gap awaiting urgent attention. 

Moreover, as intriguing as the idea might suggest, the practicality of identifying an ideal 

probiotic strain carrying all the desired genes for vitamin biosynthesis is equally challenging. 

Providentially, the biosynthetic pathways of vitamins have been actively studied. The genes, 

enzymes, and precursors involved in the production of vitamins have also been progressively 

unveiled through recent studies [332-334]. This knowledge could be integrated into 

bioengineering the ideal strain carrying all necessary genes and demonstrating stellar 

probiotic characteristics to support animal growth. Suitable probiotic strains with prominent 

vitamin synthesising ability can be screened and introduced to farms to improve the growth 

and well-being of shrimps. 

Table 3:  Microbial strains identified with the capacity to biosynthesise vitamins. 

Vitamin Strains identified with the 

capacity to biosynthesise vitamin 

Details/ Insights References 

B1 

(thiamine) 

Lactobacillus acidophilus 

CSCC2400 

In-vitro:  

- Vitamin B1 concentration progressively increases 

by 1.7-fold in the fermented soymilk.  

- Strain demonstrated high potential to 

deglycosylate isoflavone glucoside in the media.   

 

[335] 

 Bifidobacterium infantis 

 

In-vitro:  

- 48h fermentation in soymilk increases the 

concentration of vitamin B1 by 15%.   

 

[336] 

 

 Bifidobacterium longum In-vitro: 

- 48h fermentation in soymilk increases the 

concentration of vitamin B1 by 12%.   

 

[336] 

B2 

(riboflavin) 

Enterococcus faecium C43 

Lactococcus lactis subsp. lactis 

C173  

Lactococcus lactis subsp. lactis 

C195 

In-vitro:  

- The strains produce 230 ng/mL, 223 ng/mL and 

175 ng/mL of vitamin B2, respectively  

- Strains simultaneously produce vitamin B9 

- Strains demonstrated good probiotic 

characteristics.  

  

[237] 

 

 Lactococcus lactis Info:  

- Under normal conditions, L. lactis does not 

accumulate vitamin B2 extracellularly.  

[337] 
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- The JC017 mutant strain screened using the 

Microfluidic Droplet technology can produce 

vitamin B2 extracellularly.  

 

In-vitro:  

- strain produces 0.82 mg/L of vitamin B2 when 

cultured in a medium containing 0.5% of glucose. 

 

 Lactobacillus brevis ATCC367 

Lactobacillus crispatus ST1 

Lactobacillus delbrueckii subsp. 

Bulgaricus 2038  

Lactobacillus fermentum IFP 3956 

Lactobacillus plantarum JDMI  

Lactobacillus plantarum subsp. 

Plantarum ST-III  

Lactobacillus reuteri DSM 20016 

Lactobacillus reuteri JCM 1112 

Lactococcus lactis subsp. lactis CV 

56  

Lactococcus lactis subsp. lactis 

I11403 

Lactococcus lactis subsp. lactis KF 

147  

Lactococcus lactis subsp. cremoris 

NZ9000 

Lactococcus lactis subsp. cremoris 

NZ9000  

Lactococcus lactis subsp. cremoris 

A176  

Lactococcus lactis subsp. cremoris 

MG 1363 

Leuconostoc citereum KM20 

Leuconostoc mesenteroides 

mesenteroides ATCC 8239 

Leuconostoc mesenteroides 

mesenteroides J18 

Pediococcus pentosaceus ATCC 

25745 

 

 

Info:  

-The strains listed were predicted using the 

Prokaryotic Operon DataBase to carry all four 

genes required for the biosynthesis of vitamin B2 

(ribA, ribB, ribG and ribH). 

[338] 
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 Lactococcus lactis  Info:  

- (Biosynthetic) The overexpression of all four 

biosynthetic genes: ribA, ribB, ribG and ribH, are 

required to achieve a substantial production of 

vitamin B2. 

 

[339] 

 

 Bifidobacterium infantis 

 

In-vitro:  

- 48h fermentation in soymilk increases the 

concentration of vitamin B2 by 13%.   

 

[336] 

 

 Bifidobacterium longum In-vitro:  

- 48h fermentation in soymilk increases the 

concentration of vitamin B2 by 21%.  

 

[336] 

 Bacillus subtilis  

Candida famata  

Ashbya gossypii 

Info:  

- supplying glycine enhances the production of 

vitamin B2 by C. famata and A. gossypii 

- supplying hypoxanthine enhances the production 

of vitamin B2 by A. gossypii. 

 

[340] 

 

B9 

(folate) 

Lactococcus lactis subsp. lactis 

C173  

Lactococcus lactis subsp. lactis 

C195 

In-vitro:   

-The strains produce 595 ng/mL and 58 ng/mL of 

vitamin B9, respectively.  

- strains simultaneously produce vitamin B2 

- both strains demonstrated good probiotic 

characteristics.  

  

[237] 

 

 Lactobacillus plantarum  

Lactobacillus sakei  

 

In-vitro:  

- out of the 180 Lactobacillus strains isolated from 

Japanese prickles, only one L. plantarum and two 

L. sakei strains produce a high level of vitamin B9 

extracellularly (>100 µg/L) after 24h of 

fermentation. 

  

[235] 

 

 Streptococcus thermophilus 

Bifidobacterium animalis  

Enterococcus faecium 

 

In-vitro:  

- S. thermophilus was the most dominant producer 

of vitamin B9; it increases the folate level by 3.5-

4.3-fold. 

- The combination of S. thermophilus and 

Bifidobacterium animalis increases the vitamin B9 

level by 6-fold. 

[341] 
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 Streptococcus thermophilus  

Lactococcus lactis  

Leuconostoc lactis 

Leuconostoc paramesenteroide 

In-vitro:  

- S. thermophilus fermentation is sensitive to the 

pH level of the fermentation medium.  

- S. thermophilus produced the highest 

folate/biomass (214 µg/L/OD600).  

- L. lactis produces the highest level of vitamin B9 

in anaerobic conditions (291 µg/L). 

 

[342] 

 

 Streptococcus thermophilus  

Bifidobacterium longum 

Lactobacillus acidophilus  

Lactobacillus delbrueckii ssp. 

bulgaricus  

 

In-vitro:  

- Lactic acid bacteria produce higher vitamin B9 in 

reconstituted milk compared to complex media.  

- All strains produce the maximum vitamin B9 

levels after 6h of fermentation. 

- Vitamin B9 productions by S. thermophilus and L. 

acidophilus are most stable; they decline by 

approximately 8% in week 2 and about 12% in 

week 3. 

 

[343] 

 

B12 

(cobalamin) 

Lactobacillus reuteri  

 

Species with proven probiotic properties  

 

In-vitro:  

- Supply the required precursor compounds [δ-

aminolevulinic acid (ALA) and 5,6-

dimethylbenzimidazole (DMB)] production to 

enhance the production of vitamin B12. 

- Produces the active forms of vitamin B12:  

(i) α-(5,6-dimethylbenzimidazolyl)-cobinamide 

cyanide 

(ii) cyanocobalamin  

  

[327] 

 

 Propionibacterium spp. 

(eg. P. freudenreichii) 

 

 

Info:  

-Two-step production;  

- Genus necessitates both the anaerobic (step 1) and 

aerobic (step 2) conditions to produce Vitamin B12 

enzymes necessary.  

- Genes associated (coding the): cbi (step 1), cob 

(step2). 

 

[328] 

 

 Propionibacterium freudenreichii  

Rhodopseudomonas protamicus  

Propionibacterium shermanii  

Info:                                               

- When glucose is the main component of the 

[344] 
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 culture medium, the strains produced 206, 135 and 

60 mg/L of vitamin B12, respectively.  

 

 Propionibacterium freudenreichii  

 

Info:  

- A classical dairy microorganism that can be used 

for fermentation to produce vitamin B12 for feed 

application. 

 

[345] 

 

  Euglena bioassay method to determine vitamin B 

content in samples (in-vitro and in-vivo). 

 

[346] 

 Klebsiella sp.  

 

In-vitro:  

- Klebsiella sp. utilize methanol as a sole carbon 

source for the production of vitamin BI2 

- Supplying organic nutrients like peptone, yeast 

extract, and vitamin enhances the production of 

vitamin BI2. 

 

[347] 

 Selenamonas ruminantium  

Peptostreptococcus elsdenii  

Butyrivibrio jibrisolvens  

 

In-vitro:  

E.coli Cup-plate assay:  

- Among the 21 microbial species isolated from the 

cow’s rumen, S. ruminantium is the most prolific 

producer of vitamin B12, followed by P. elsdenii. 

 

O. malhamensis assay:  

- Assay reflects the actual activity of vitamins in 

animal.  

- Results suggest that the relative proportion of 

vitamin B12 to the analogues under the pure culture 

conditions was not as high as that in the rumen.  

 

[348] 

C 

(ascorbic 

acid) 

Gluconobacter  

 

Info:  

- Strain developed for the biosynthesis of vitamin C 

intermediate (2-keto-L-gulonic acid). 

 

[334] 

 

A Escherichia coli mutant  

(contains genes coding for the four 

key enzymes  

involved in the ß-carotene 

biosynthesis:  

In-vivo (mice):  

- Detection of ß-carotene-producing bacteria and ß-

carotene in the faeces demonstrate the persistence 

of the probiotic strains in the intestine.  

 

[349] 
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geranylgeranyl pyrophosphate, 

lycopene cyclase,  

phytoene desaturase and phytoene 

synthase  

from Erwinia herbicola)  

 

E 

(tocopherol) 

Lactobacillus rhamnosus WQ2 In-vitro:  

- Strain produced a high level of α-tocopherol 

(376.6 µg/g).  

- Strain is able to increase the antioxidant capacity 

of the media within a short incubation time.  

- The antioxidant capacity highly correlates to the 

bacterial proteolytic activity. 

 

[335] 

 

K 

(menaquino

nes) 

Bacillus subtilis  

 

In-vitro:  

- The production of Vitamin K parallel increases in 

proportion with the number of cells in the first 8h.  

- The Vitamin K extracellular secretion increases 

rapidly after 10h (1.7%) and reaches a plateau after 

32h (31%).  

 

[350] 

 

 Bacteroides ovatus 

Enterobacter agglomerans 

Enterococcus faecalis 

Escherichia coli 

Prevotella buccae 

Staphylococcus capitis 

Staphylococcus epidermidis 

Staphylococcus haemolyticus  

Staphylococcus warneri 

In-vitro:  

- Strains produce Vitamin K.   

[351] 

 

 Bacteroides sp. 

Citrobacter freundii 

Enterococcus faecium 

Serratia marcescens 

Staphylococcus capitis  

Staphylococcus warneri 

In-vitro:  

- Strains produce Vitamin K.   

[351] 
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6.3. Polyamine  

Polyamines are small polycationic molecules composed of multiple amine groups on 

an aliphatic hydrocarbon backbone [352, 353]. These compounds are essential metabolites 

ubiquitously found in almost all living organisms. Some standard polyamines include 

spermine, spermidine, and putrescin [352-354]. These polyamines have distinct valences and 

different molecular structures and assume different functional roles. Moreover, the respective 

concentration of each polyamine varies in other organisms. For instance, spermine is absent 

in the fungal Saccharomycotina subphylum. In contrast, the concentrations of spermine and 

spermidine are high in eukaryotes, whereas putrescine is the dominant polyamine identified 

in Escherichia coli bacteria [352]. For the case of shrimp, gas chromatography-mass 

spectrometry (GC-MS) revealed that polyamines such as spermidine, N, N'-bis(3-

aminopropyl)-l,3-propanediamine (BAP) and 3,3'-diaminodipropylamine (DAD) were 

present in the white shrimp (Penaeus setiferus). However, the non-detection of common 

polyamines such as putrescine and 1,3-diaminopropane can be attributed to the rapid carbon 

flux through these intermediates, or possibly the BAP and DAD are selectively derived from 

dietary sources [355]. Unfortunately, information related to polyamine in shrimps is relatively 

limited, although the presence and significance of polyamines in shrimps have been 

established.  

Polyamines are vital components to ensure normal cellular processes such as stress 

response, genetic expression, cell division, differentiation, growth, and survival [352, 354, 356, 

357]. In this regard, polyamine levels within cells are tightly regulated through a complex 

mechanism which includes the mediation of catabolism and the de novo biosynthetic 

pathways of polyamines to meet the cellular demand [352, 358]. Sugiyama et al. [359] 

comprehensively analyzed polyamines' biosynthesis and transport mechanism in dominant 

bacteria identified in the human gastrointestinal tract. Natural polyamines are formed through 

a series of precisely regulated energy-dependent reactions driven by several key enzymes 

such as ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase 

and spermine synthase [352, 354, 357, 360, 361]. In some bacteria and plant species, an alternative 

pathway, namely the arginine decarboxylase pathway that involves another two enzymes, 

polyamine oxidase, and spermidine-spermine acetyltransferase, directs the conversion of 

spermine to putrescine [352, 354].  

Besides that, regulating the transportation of the extracellular polyamine across the 

plasma membrane through passive diffusion or distinct polyamine transporters is essential to 

ensure proper cellular function because polyamines are also supplied through extracellular 

sources such as a gut microbial pool or via dietary inclusion [358, 362]. Therefore, this implies 

that probiotic strains could be another novel source to supply polyamine in-situ to support 

growth and cellular function. Yeast is an important dietary source for polyamine supply [360, 

363]. Polyamine production varies between different yeast species. D. hansenii is one of the 

strains known for its distinct potential in secreting polyamines. The concentration of 

spermidine, spermine and putrescine measured in D. hansenii are significantly higher than 

that in S. cerevisiae and Saccharomyces boulardii [226, 364]. Reyes-Becerril et al. [365] studied 
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the polyamine-producing capacity of 13 different D. hansenii strains isolated from diverse 

sources. High-pressure liquid chromatography (HPLC) analysis revealed two strains, D. 

hansenii CBS004 and D. hansenii L2, isolated from marine water and citrus fruit, 

respectively, as the most prolific producers of polyamines among the 13 strains studied. 

Furthermore, Tovar et al. [226] noted the strong adhesion potential of D. hansenii to the 

intestinal mucus, thus demonstrating the probiotic efficiency of the strain. The inclusion of 

1.1% of D. hansenii in the diet, which corresponds to an approximately 106 CFU/g of diet, 

was shown to improve the survival rate of sea bass (Dicentrarchus labrax) larvae by 10% as 

well as lower the malformation rate by 14%. Most importantly, the final average weight of 

the treated cohort is two times higher than the untreated group [364]. This finding corroborates 

the effect of D. hansenii on gilthead seabream (Sparus aurata) [366] and longfin yellowtail 

(Seriola rivoliana) [367]. These effects of D. hansenii are likely attributed to the polyamine 

metabolites produced by the live yeast in the intestinal tract [364]. This postulation could likely 

be proven by comparing the growth parameters in animals fed with probiotic supplements 

(live yeast strains with polyamines production capacity) and those provided with inactive 

yeast supplements [368]. 

Although the growth-related effects of polyamine are yet to be fully deciphered, its 

primal role in regulating the broad range of cellular processes, ranging from cell growth to 

differentiation, mRNA transcription to protein translation, has been established [352, 354, 356]. 

Increasing evidence points to the involvement of polyamines in Ca2+ signalling, which is vital 

for regulating the stimuli of growth factors and hormones on the cell surface receptor. 

Besides, polyamine was also known to play a role in the formation of the cytoskeleton by 

facilitating the conversion of tubulin to microtubules and actin polymerization. Spermine and 

spermidine are known to induce cytokinesis [361]. Some studies also identified the 

involvement of polyamine in the nervous system, particularly in the mediation of synaptic 

function [354]. The rat model demonstrated that polyamine putrescine is rapidly absorbed and 

converted into succinate, which serves as a form of instant energy supplied to the intestinal 

cells [369].  

At the molecular level, polyamines help to stabilise the cell membrane, proteins, and 

nucleic acid structures, including DNA and RNA [352-354, 370, 371]. Under physiological pH, 

polyamines are positively charged. As polycations, polyamines bind electrostatically with 

the negatively charged macromolecules, thus stabilizing the structural conformation and 

protecting them from enzymatic degradation or thermal denaturation [358, 361]. Besides, 

polyamines also participate as substrates and stimulate DNA, RNA, and protein synthesis, to 

facilitate cell division [226, 358]. The polyamine levels strongly correlate with the proliferative 

activity of cells, where the uptake and utilization of exogenous polyamine are significantly 

higher in rapidly proliferating cells compared to the quiescent cells. It was also noted that 

maintaining the polyamine concentration is indispensable for cells to proliferate [354]. 

On the contrary, genetic studies revealed that the deletion of genes involved in the 

polyamine metabolic negatively affects cell proliferation and survival rate [352]. Sustained 

depletion of polyamines limits the formation of hypusine (an amino acid component of the 
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initiation factor eIF-5A, whose precursor is spermidine), thus blocking the subsequent 

mRNA translation pathways such as initiation and elongation of the new peptide chain on 

the ribosome [361]. Depleting polyamine through mutating its biosynthetic pathways resulted 

in retarded growth of the organisms [372]. Besides, polyamine deficiency was reported to 

culminate in severe hypoplasia in the intestinal mucosa [362]. Under extreme cases, 

dysregulation of polyamine levels can negatively impact energy homeostasis and disrupt the 

regulation of lipids and glucose [358]. 

The implication of polyamines is not solely limited to the growth and survival of cells 

but is also expressed in catalysing the maturation of the gastrointestinal tract. To illustrate 

the mRNA expression of enzymes like alkaline phosphatase, aminopeptidase, lipase, maltase, 

and trypsin showed that the pancreas and intestine of sea bass fed with yeast probiotics 

developed at a significantly higher rate as compared to the group devoid of this supplement 
[364]. Similarly, the dietary inclusion of purified spermine significantly enhances the intestinal 

maturation of sea bass [373]. This phenomenon is further evidenced by direct polyamine 

supplementation to neonatal mice that appreciably improved intestinal health and increased 

the proportion of beneficial microbes in the gut [374]. Additionally, polyamines have been 

regarded as essential players in regulating paracellular permeability. Polyamines enhance the 

epithelial integrity through their stimulative effectiveness in producing intercellular junction 

proteins like E-cadherin, occludens-1, occluding, and zonula [358, 375]. Therefore, it can be 

inferred that polyamines play vital roles in promoting the development of the intestinal 

mucosa and stimulating the maturation of the larvae's digestive organs, which enhances the 

animal's growth and survival [360]. 

Last but not least, polyamines appear to exert an influence on the immune system [360, 

368]. For example, the polyamine secreted by the D. hansenii L2 strain is postulated to be the 

cause of elevating the immune function of gilthead seabream (S. aurata) [366]. Evidence 

demonstrates that extracellular polyamine concentrations are significantly elevated during 

inflammation due to the secretion from the damaged cells or excretion during tissue 

regeneration [354]. These extracellular polyamines suppressed the production of inflammatory 

cytokines and elevated the release of cytokines that promotes healing [376, 377]. Moreover, 

polyamines exert an antioxidant effect by acting as scavengers for reactive oxygen species 
[378, 379]. In this regard, polyamine levels can be used as surrogate markers to determine the 

growth condition of the organism. In one of the few works studying polyamines in 

crustaceans, Stuck et al. [380] concluded that expressing the polyamine level as a ratio to DNA 

constitutes an effective method to more accurately reflect the nutritional status of L. vannamei 

postlarval. This is because DNA is never catabolised even under prolonged starvation and 

can therefore compensate for the effect of differential catabolism during starvation. In 

another experiment, Watts et al. [381] noted that the polyamine level at the head of L. vannamei 

is significantly higher than the tail and more appropriately reflects the development and 

growth status of the animal. Results showed that the polyamine to DNA ratio is highly 

dependent on feeding. The parameter is significantly lowered in the starved group compared 

to the fed group and is immediately upregulated upon resuming feeding [380]. The extent of 
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probiotics’ contribution to polyamine levels in shrimp is yet to be further assessed. These 

studies can be applied to optimized future studies to verify the effect of polyamines conferred 

by probiotics in shrimps.  

Besides D. hansenii, the introduction of probiotics Bifidobacterium spp. also elevated 

the polyamine content in the intestinal lumen [382]. Intriguingly, Bifidobacterium spp. lack the 

homologs of enzymes for polyamine biosynthesis. It is postulated that Bifidobacterium spp. 

acidifies the intestinal microenvironment by producing lactate or acetate and thus stimulates 

the autochthonous microbiota to synthesise polyamines. [383]. The involvement of the 

intestinal microbial in polyamine production is further strengthened when the gastrointestinal 

organ maturation effect is only evident and when polyamines are administered orally and not 

via other routes [384]. Furthermore, this notion is further vindicated that this putrescine-

enhancing effect is completely eliminated when the animal is co-treated with arginine and 

antibiotics [385]. Recent findings further deciphered the mechanism of this novel pathway of 

polyamine production. Polyamine putrescine is produced from arginine by transforming the 

reactive intermediate, agmatine, in an acidic environment. Kitada et al. [383] tested 91 different 

combinations of strains and concluded that E. coli, Enterococcus faecalis, and 

Bifidobacterium spp. formed an excellent combination to induce putrescine production. The 

three strains act as the acid tolerant-arginine supplier, energy cum agmatine deiminase system 

provider and acidic environment creator, respectively. This may imply that the direct 

polyamine biosynthesis ability of strains is not a mandatory prerequisite for probiotic 

selection. Right combinations of strains that facilitate the polyamine production in-vivo can 

too generate polyamines. To illustrate, Clostridium sp., Enterococcus sp., Lactobacillus sp., 

Lactococcus sp. and Streptococcus sp. are a few prevalent examples of commensal genera 

identified for their arginine deiminase pathway to degrade arginine anaerobically but lack the 

essential polyamines biosynthetic enzymes [358, 386]. Combining these strains with those that 

supply the required enzymes complement the activities between strains and can orchestrate 

the production of polyamines in-vivo. In other words, probiotics could be an effective means 

to optimize the polyamine composition in the gastrointestinal tract by modulating the 

biochemical reactions between the gut microbial community. 

7. Increasing the digestive enzyme activity  

Enhancing the digestive enzyme activities represents another convincing pro-growth 

rationale for probiotics. A recent quantitative analysis by Fernandes et al. [104] demonstrated 

the significance of probiotics in elevating the total enzymatic activity in the gastrointestinal 

tract of L. vannamei. At the end of the 120-day culture, lipase activity significantly increased 

by 58%, protease activity increased by 49%, and amylase activity increased by 34% in the 

shrimps treated with the salt pan bacteria compared to the untreated shrimps. Pearson's 

correlation analysis further revealed a strong positive correlation between the enzymatic 

activities and the final yield of shrimps. This result is congruent with the findings of Ziaei-

Nejad et al. [387], in which the administration of Bacillus spp. Probiotics significantly 

increased the total protease, lipase, and amylase activity and recorded 8 to 22% higher wet 
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weight compared to the control group. Similarly, Gamboa‐delgado et al. [388] reported that 

the weight gain of L. vannamei increases with lipase and chymotrypsin activities.  

Intriguingly, the range of enzymatic activity greatly varies between probiotics, even 

among strains from the same genus. For instance, among the three promising Actinomycete 

strains investigated, the ability to degrade many molecules, such as lipids, proteins, and 

carbohydrates, varies between strains [389]. In-vivo investigation revealed that the salt pan 

bacteria probiotics increased the cellulase activity in L. vannamei, but the 10% increment 

compared to the control group is not statistically significant. In contrast, commercial 

probiotics increased cellulase activity significantly by 30% [104]. The outcome may vary 

depending on the probiotic strain selected. In this regard, in-vitro screening for the enzymatic 

activity of probiotic strains will provide a helpful prediction of the in-vivo effect of probiotics 

in enhancing digestive function [104, 222, 390-392]. Additionally, it is important to note that the 

dose and duration of probiotic supplementation may also affect the results [393]. Notably, 

although the significance of each enzymatic elevation differs at different stages of growth, 

Zhou et al. [394] reported that adding Bacillus coagulans increases the lipase, protease, and 

amylase activity in L. vannamei. It could be inferred that probiotic strains exhibiting different 

enzymatic properties can be tailored in the treatment regime to complement the digestive 

function of the animal at specific life phases.  

Bacillus sp. [212, 240, 387, 394-396], Enterobacter sp. [134], Lactobacillus sp. [134], 

Pediococcus sp. [149] are some examples of probiotics that have been reported to increase the 

enzymatic activity in shrimps. Some earlier works have covered a concise list of probiotics 

and their respective enzymatic augmentation effects in aquatic species. Probiotic strains, 

particularly Bacillus sp. and yeast, are renowned for their ability to synthesize a wide array 

of extracellular enzymes such as amylase, cellulase, chitinase, lipase, phytase, and protease 
[153, 397-399]. Certain unique strains thrive in extreme niches, such as the hypersaline bacteria 

and Streptomyces spp. isolated from mangrove soils are excellent sources of exogenous 

enzymes that work efficiently under extreme conditions [104, 400-404]. These extracellular 

enzymes supplemented by probiotics may function optimally at broader pH and salinity 

range, thereby extending the period of enzymatic digestion to facilitate more efficient 

hydrolysis of substrates [405, 406]. 

To date, a lack of study distinguishes whether the activity arising from the exogenous 

enzymes is directly contributed by probiotics or indirectly through inducing the endogenous 

enzymes produced by the host [222, 395]. Usually, enzymatic activity improvement is assayed 

using the pooled gastrointestinal samples or whole-body extract of shrimps [33, 104, 182, 211, 387, 

393, 395, 407]. Ziaei-Nejad et al. [387] reported that Bacillus sp. probiotic additives significantly 

elevated the total enzymatic activities in the Indian white shrimps(Fenneropenaeus indicus) 

reared in earthen ponds. However, the colonisation rate of the probiotic bacteria detected in 

the digestive tract is very low. This may suggest that although these exogenous enzymes 

secreted by probiotics may only constitute a minor contribution to the overall digestive 

activity in shrimps, the presence of probiotics may likely enhance the microbial activity in 

the gut and stimulate the secretion of endogenous enzymes [90, 134, 387, 395, 408]. This speculation 
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is well supported by the recent work of Zuo et al. [134], in which the epithelium cells in the 

midgut of L. vannamei treated with probiotics revealed an actively secreting state under the 

observation of an electron microscope. This phenomenon is congruous to the increment of 

digestive enzyme activities in the shrimps throughout probiotic treatment.  

The digestive enzymes identified in shrimps include proteases (aminopeptidase, 

carboxypeptidase, chymotrypsin, metalloprotease, trypsin), lipase, esterase, and 

carbohydrase (amylase, cellulase and chitinase) [222, 238, 407, 409, 410]. Despite being an 

omnivorous animal, shrimp has a limited capacity to digest some forms of complex 

carbohydrates like starch due to the lack of specific enzymes such as the α-1,6-glucosidase. 

Supplying this enzyme that is not naturally present in the host via the introduction of 

probiotics may aid in the digestion of the α-1,6-glycosidic bond of amylopectin and thus 

facilitate the digestion of those inherently indigestible nutrients [406]. Arellano-Carbajal and 

Olmos-Soto [411] isolated a Bacillus sp. strain from the marine environment, endowed with 

the capacity to synthesise high levels of thermostable α-1,4-glucosidase and α-1,6-

glucosidase in a relatively short time. Although in-vivo data is lacking, it is a promising 

candidate for shrimp probiotics. This is because the enzymes function at an optimal 

temperature and pH similar to the shrimps' enzymes [411, 412]. Similarly, Ochoa-Solano and 

Olmos-Soto [406] also demonstrated the capacity of several Bacillus strains in producing α-

1,4-glucosidase, α-1,6-glucosidase and α-galactosidase through the quantitative assay using 

substrates such as amylose, amylopectin, melibiose, and raffinose. Another promising 

probiotic strain for shrimp culture is Lactobacillus casei which produces the extracellular 

enzyme inulinase. Inulinase works by hydrolysing the ß-2,1-glycosidic linkages of prebiotic 

inulin in the gastrointestinal tract to release small fructooligosaccharides or fructose, which 

can become an energy source for the host [413]. The idea is further supported by the findings 

of Shiau and Peng [414], in which complex carbohydrates such as starch is proven to be better 

feed options for P. monodon. They resulted in higher feed efficiency and protein efficiency, 

which resulted in higher weight gain and better survival rates compared to the group fed 

simple sugars like glucose. In this regard, introducing carefully selected probiotic strains that 

are prolific producers of carbohydrase will further improve the nutritional value of the animal 

feed by augmenting the assimilation of carbohydrates in shrimps.  

From another perspective, these enzymes derived from probiotics can degrade the 

feed's antinutritive factors, thereby enhancing shrimp's receptivity to plant-substituted fish 

meal [208, 406]. This is an important property to be harnessed when corn, soybean, and wheat 

are becoming increasingly popular aquafeed ingredients due to their lower prices and easier 

accessibility [415-417]. Supplementing these feed substitutes with probiotic strains that actively 

secrete enzymes such as cellulase, galactosidase, glucosidase, glycosidase, and pectinases 

will significantly improve the energy intake from the diet substituted with plant-based 

ingredients [415, 418-420]. Moreover, the improved digestibility mediated by higher enzymatic 

activity also maximizes feed utilisation. For instance, Lactobacillus and Enterobacter 

hominis supplementation resulted in higher carbon utilization ability in L. vannamei [134]. 

Increased AWCD measurement reflected the relative increment of carbon sources, including 
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amines, amino acids, carbohydrates, and polymers available to L. vannamei juveniles 

following the probiotic intervention [155]. An oxygen bomb calorimeter can be employed to 

measure the energy content of shrimps [421]. Several studies consistently demonstrated the 

substantial improvement of energy utilization parameters (feeding rate, absorption rate, 

conversion index, excretory and metabolic rate) in shrimps fed the diet incorporated with 

probiotics [421, 422].  In this regard, probiotics can significantly improve feed efficiency and 

increase feed expenditure savings in shrimp farming [73, 406, 420].  

In addition, the elevated digestive enzyme activities in the intestinal canals of shrimps 

induced by probiotics led to improved nutrient digestibility. The enzyme catalyses the 

breakdown of complex food molecules into smaller, more digestible forms that could be 

readily taken in. Take the example of protein; higher protease activity hydrolyses peptide 

bonds and liberates free amino acids that can readily be assimilated [152]. Higher levels of 

alanine, arginine, isoleucine, and proline were detected in M. rosenbergii fed with the 

probiotic-supplemented diet compared to the control group fed with a basal diet. Both 

essential (arginine, histidine, isoleucine, leucine, lysine, threonine, and tyrosine) and non-

essential amino acids (alanine, glutamine, glycine, proline, and serine) are essential for 

animal development as each amino acid perform specific functions. These amino acids are 

building blocks for synthesizing new proteins [90]. Notably, a higher crude protein level is 

detected in M. japonicus fed with C. butyricum probiotic [155]. This finding agrees with 

Seenivasan et al. [421], who also reported that the protein composition, amino acid, lipid, 

carbohydrate and ash content are significantly higher in M. rosenbergii treated with 2% 

Lactobacillus sporogenes and S. cerevisiae probiotics. In an experiment in which chromic 

acid (Cr2O3) was employed as an indicator for digestibility, B. subtilis probiotic has been 

found to significantly increase the apparent digestibility coefficient (ADC) of amino acids in 

L. vannamei [124]. Besides, several studies demonstrated that probiotic application could 

effectively increase the protein efficiency ratio (PER) and lower the FCR [422, 423]. Indirectly, 

by increasing the enzymatic activity, probiotics inflect shrimps' metabolic function, which 

translates to a better growth profile. The exogenous enzyme activities of probiotics could 

therefore serve as valuable indicators for nutrient digestibility, feed utilization, and growth 

index of shrimps [424, 425]. 

Interestingly, antibiotics seemingly do not demonstrate this boosting effect on 

enzymatic activity. In a recent publication, probiotic-supplemented diets significantly 

improved lipase activity in L. vannamei compared to the control group and the group fed with 

antibiotic oxytetracycline [33]. However, information on shrimps is somewhat limited. An 

early study using rainbow trout (Oncorhynchus mykiss) shows no apparent increase in lipid 

digestibility following the administration of oxalic acid, oxytetracycline, and 

chloramphenicol [426]. On the contrary, the treatment of antibiotics (ampicillin trihydrate, 

streptomycin sulphate, and antifungal nystatin) significantly diminished the cellulase, 

chitinase, lipase, and protease activity in northern krill (Meganyctiphaunes norvegica). The 

lower enzymatic activity corresponded with the decline in bacteria counts in the 

hepatopancreas and stomach of animals reflected in the lower Acridine Orange Direct Count 
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(AODC). This finding surmises a commensal relationship between gut bacteria and the 

digestive enzymatic activities in the host organism [179]. 

8. Modifying the gastrointestinal morphology  

When examining the growth promotion effects of probiotics, gut physiology could 

not be neglected. The digestive tract of decapod crustaceans can be arbitrarily divided into 

three parts, namely the foregut, midgut, and hindgut [427, 428]. Histological studies revealed 

that significant morphological changes typically occur in the midgut region of shrimps 

following probiotic administration [162]. Probiotics improve the architecture of the 

hepatopancreas (see Section 8.1) and intestine (see Section 8.2), thereby facilitating digestion 

and assimilation of nutrients in the animal. Strengthening the gut function protects the animal 

from opportunistic disease, safeguards animal health, and improves growth performance.   

8.1. Hepatopancreas  

Hepatopancreas, also known as the midgut gland, is a vital organ that sits in the 

cephalothorax region of the crustacean, connected right behind the stomach in the 

gastrointestinal tract. It is relatively large and typically constitutes 2 to 6% of the total body 

weight of a decapod [428]. The hepatopancreas is a versatile organ that plays essential roles in 

the digestive system through the regulation of numerous processes such as steroid hormone 

synthesis, digestive enzymes secretion, carbohydrate and lipid metabolism, nutrient 

absorption, storage, and distribution [427-432]. Besides, the hepatopancreas also acts as the main 

detoxification organ for shrimps, particularly during the rapid growth phase [432]. These 

biological processes are closely associated with growth performance. The role of the 

hepatopancreas in shrimp is akin to the combined functions of both pancreas and liver in 

mammals [38, 432]. Hence, the health of the hepatopancreas is the main index in the growth 

profile of the animal.  

The hepatopancreas is primarily composed of five different types of epithelial cells, 

namely Embryonalzellen/ embryonic cells (E cells), Fibrenzellen/ fibrillar cells (F cells), 

Blasenzellen/ blister/ vesicular/ extrusion cells (B cells), Restzellen/ resorptive/ reabsorption 

cells (R cells) and midget/ basal cells (M cells) [270, 427, 433-436]. Meanwhile, M cells may not 

be present in some shrimp species [437] (see Figure 4). Each cell type has unique features and 

functions (see Table 4). The small cuboidal E cells widely distributed at the distal tubules are 

undifferentiated cells responsible for epithelial renewal through mitotic divisions [427, 437, 438]. 

E cells serve as precursors for other cell types in the hepatopancreas. The F cells further 

differentiate into B cells. The cells become more differentiated, moving from the distal to the 

proximal tubules [432, 435, 439]. F cells have a distinctive fibrillar appearance, a characteristic 

large oval nucleus at the centre, and well-developed reticulum and ribosomes [182, 438]. Silva 

et al. [437] further discovered that F cells not only secrete digestive enzymes but are also 

involved in the production of protective mucus. Besides, the F cells are involved in 

detoxification, protein synthesis, nutrient absorption, metabolism, and storage [427, 432, 440]. B 

cells are the largest epithelial cell type distributed primarily in the middle and proximal 
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regions of hepatopancreatic tubules. B cells are characterised by a distinctively large vacuole 

accompanied by several pinocytic apical vacuoles and a round basal nucleus in the cytoplasm. 

They are the primary producers of endogenous digestive enzymes in shrimps. Also, B cells 

assume the roles of intracellular digestion, nutrient accumulation, and distribution [182, 427, 432, 

435, 437]. R cells can be recognised through their prismatic appearance with multiple small 

vacuoles in the granular cytoplasm. They are ubiquitously distributed throughout the 

hepatopancreatic tubules but mainly concentrated in the proximal region. R cells are the main 

storehouses for lipids, glycogen, and trace elements. They are also involved in absorbing and 

metabolizing nutrients and detoxifying heavy metals [432, 435, 437, 440]. Since R cells serve as the 

primary energy storehouse in the hepatopancreas, it is often used as an indicator to assess the 

nutrition status of shrimp. A higher expression of R cells may imply higher energy utilization 

and nutrition value [441, 442]. M cells are triangular basal cells with a rounded nucleus 

containing several nucleoli [437]. Detection of M cells at the embryonic zone suggests that M 

cells have their origin independent of E cells [440]. They are few but sparsely distributed across 

the hepatopancreatic tubules, usually located close to R and B cells. Unlike the B cells, F 

cells and R cells, M cells do not have microvilli, and their apex does not extend to the lumen 
[427, 437]. M cells are believed to function as a storage reserve for organic substances [435]. 

Following a 5-week supplementation with Bacillus AQAHBS001, a healthy 

hepatopancreas structure demonstrating a complete set of epithelial cells such as F, B, and R 

cells was evident in L. vannamei [123]. Moreover, the probiotic treatment resulted in a 

comparatively higher number of B cells in the hepatopancreatic tubules than in the control 

set [443]. A similar observation was reported in juvenile L. vannamei following a 10-day 

feeding of probiotics (mixture of S. cerevisiae and Lactobacillus acidophilus) at a 1:1 ratio 

with two different doses of 108 and 109 CFU per kilogram of diet. Both probiotic mixtures 

not only resulted in a significant increase in B cell count in the hepatopancreatic tubules but 

also substantially reduced the hepatopancreas pathology in shrimps infected with acute 

hepatopancreatic necrosis disease (AHPND) [444].  

 

Figure 4. Longitudinal and lateral cross-section illustration of hepatopancreatic tubules. 
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Table 4: Five different types of epithelial cells in the hepatopancreas. 

Hepatopanc

reatic 

epithelial 

cells 

Other names Features Distributi

on across 

tubule 

Functions 

E cell -Embryonalzellen 

- embryonic cell 

- cuboidal shape 

- small 

- undifferentiated cells 

- cytoplasm presents intense 

basophilia 

- mainly in 

the distal 

region 

- mitotic division 

- renewal of epithelial 

tissue 

- precursor cell for other 

cell types in the 

hepatopancreas  

 

F cell - Fibrenzellen 

- fibrillar cell 

- fibrillar appearance  

-prismatic/triangular/cylindrical 

shape  

- contain a large amount of well-

developed endoplasmic reticulum 

and ribosomes 

- large oval nucleus at the centre 

- cytoplasm presents intense 

basophilia  

- with microvilli 

- apex extends to the lumen  

- mainly in 

the middle 

and distal 

region 

- secrete a digestive 

enzyme 

- secrete protective mucus  

- absorb nutrient  

- synthesise protein   

- store nutrients  

- differentiate into B cells  

- detoxify organic 

xenobiotics and heavy 

metals 

 

B cell - Blasenzellen  

- blister cell 

- vesicular cell 

- extrusion cell 

- largest epithelial cell  

- globular shape  

- large vacuole  

- small pinocytic apical vacuoles 

- round basal nucleus 

- acidophilic cytoplasm  

- with microvilli at the apical region 

of the cytoplasm 

- apex extends to the lumen 

 

- mainly in 

the proximal 

and middle 

region 

- also, in the 

distal region 

 

- secrete digestive 

enzymes 

- intracellular digestion 

- nutrient accumulation 

- transport digested 

materials 

R cell - Restzellen 

- resorptive cell 

- reabsorption cell 

- elongated/ prismatic shape  

- contain multiple small vacuoles 

- round nucleus  

- granular cytoplasm   

- with microvilli 

- apex extends to the lumen 

- across 

tubule 

 

- absorb nutrient  

- metabolize nutrient  

- synthesise lipoprotein  

- storage of lipids and 

glycogen  

- sequester trace elements 

(copper, magnesium, 

phosphorus, sulphur and 

zinc) 

- detoxification (i.e. heavy 

metals)  

 

M cell - Midget 

- Basal cell 

- triangular/rounded shape  

- round nucleus containing several 

nucleoli  

-cytoplasm presents intense 

basophilia  

- without microvilli  

-remain in contact with the basal 

lamina 

-restricted at the basal lamina  

-apex does not extend to the lumen  

- across 

tubule  

- located 

close to R 

and B cells  

- few in 

number 

- storage of organic 

reserve 
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Besides, the histopathology studies showed that exposing P. monodon to probiotic 

Bacillus thuringiensis did not negatively impact the internal organs. The hepatopancreatic 

epithelial cells retain normal nuclei and vacuoles [445]. This may imply that the probiotics are 

safe and non-toxic to the shrimps. In addition, lesser necrotic tubules and a remarkably lower 

degree of atrophy were observed in the hepatopancreatic tissues of shrimps treated with 

probiotic Streptomyces spp. (N7 and RL8) when compared to the untreated counterpart. 

Shrimps treated with L. acidophilus presented less intense hemocytic inflammation and 

multifocal necrosis at the hepatopancreatic tubules after being challenged with Vibrio spp. 
[446]. This also corroborated with Wee et al. [109], who noted higher epithelial integrity in the 

hepatopancreas of M. rosenbergii treated with Bacillus cereus. Although there was slight 

sloughing of the hepatopancreatic tubules in the treatment group, most of the epithelial cells 

remained intact. The shrimps exposed to probiotics demonstrated higher hepatopancreatic 

integrity post-infection with A. hydrophila than the control set, which demonstrated 

significant haemocyte infiltrations accompanied by major sloughing and highly necrotic 

tissues [109]. Similar trends have also been noted in shrimps treated with synbiotics (co-

administration of probiotics with prebiotics) [182, 447]. In this light, the health of the 

hepatopancreas constitutes one of the major elements dictating the growth performance of 

shrimp. Selecting the right probiotic strain could positively reinforce the hepatopancreas' 

functionality and help secure a better growth rate and farm harvest [432].  

8.2. Intestine  

The effect of probiotics is also manifested through the changes to the intestinal 

morphology of shrimps. Most importantly, the cell surface protein's function in mediating 

probiotics' effects has been established as the shrimps fed the probiotics deprived of surface 

protein did not demonstrate significant improvement in the intestinal environment [162]. The 

surface proteins likely execute the modulatory effect on the intestine upon binding to the 

intestinal epithelial cells and the gastrointestinal mucins [162, 448, 449].  

The most evident morphological alteration in the shrimps’ intestine induced by 

probiotics is reflected in the architecture of the intestinal villi. The introduction of Bacillus 

coagulans [95], B. subtilis [123], mixed probiotics (Bacillus spp. + Lactobacillus sp.) [94] and S. 

cerevisiae [183] consecutively demonstrated a consistently increasing trend in the villus height 

of the enterocytes. Probiotic supplementation improved the size of the intestinal epithelial 

cells, which is reflected in the increased thickness of the intestinal wall and the width of the 

mucosa [123]. Higher villus number, submucosa, and lamina propria were reported following 

an eight-week feeding of Bacillus lichenformis. The disparity against the control group 

became evident in the fourth week of the trial [450]. Shrimps fed probiotics Lactococcus lactis, 

and Pediococcus pentosaceus exhibited a significantly thicker muscular layer at the mid-

intestine compared to the control group and the antibiotic oxytetracycline-treated group. The 

same experiment also affirms the importance of strain selection as Bacillus spp. probiotics 

did not induce any statistically significant alteration to the intestinal muscular layer in L. 

vannamei [33]. Higher intestinal height correlates with animal weight gain [451].  
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In addition, the electron microscopic view discloses the epithelial cells in the probiotic 

group presented an active secretory state. High-density granules were noted in the cytoplasm 

of the probiotic-treated cohort [134]. These results correlated with the higher digestive enzyme 

activities observed following probiotic interventions (see Section 7). Furthermore, small 

clusters of bulges can be observed on the inner surface of the intestine. A higher fold depth 

and fold density were apparent in the probiotic treatment groups when contrasted with the 

non-treated group [134]. A more significant number of smaller crypts implied by probiotic 

treatment fabricate a larger surface structure of the intestine for nutrient assimilation and 

significantly improve the absorptive capacity of the intestine [452]. Since the intestine 

functions through a luminal absorption mechanism, these modifications induced by 

probiotics bolster the digestive and absorptive efficiency of the organ. 

It is often neglected that the intestine also plays an essential role in regulating immune 

homeostasis and growth [154, 167, 176, 222, 453]. Patrolled by immune proteins and further 

barricaded by a stable microbiome, the structural integrity across the large surface area of the 

intestine forms a protective barrier against inflammation and pathogen invasion [453]. From 

another perspective, intestinal mucosal is the first line of defence against pathogens. 

Pathogenic bacteria may invade the digestive system by triggering the onset of mechanisms 

that foster the permeability of the gut mucosal layer to acquire passage [140, 454-456]. In this 

context, probiotics represent a promising strategy to mitigate infectious diseases [264, 457, 458]. 

Probiotics are postulated to effectuate their protective effect against infectious diseases by 

strengthening the protective mechanisms in the gut, thus enhancing the immune function (see 

Section 9) and maintaining the intestinal mucosal integrity.  

 A histopathology study revealed a significantly healthier intestinal tissue in the 

probiotic cohort is discernible post-infected by Vibrio parahaemolyticus [162]. The qualitative 

morphological disparity between treatment groups becomes evident when examined under 

electron microscopy. Transmission electron microscopy (TEM) images showed a higher 

mucosal layer density and better epithelial cell integrity in the probiotic-treated group [134]. 

Besides, dietary supplementation of Halomonas sp. to Chinese white shrimp 

(Fenneropenaeus chinensis) resulted in a regular and compact arrangement of epithelial cells 

in the intestine, which is in startle contrast to the sparse and irregular epithelial cells 

arrangement observed in the untreated counterpart [140]. This is consistent with the effect of 

Lactobacillus pentosus treatment in L. vannamei, in which the mucosal layer of the treated 

group is denser and has more blooms. 

In contrast, the untreated group demonstrated looser and thinner mucosae [162]. The 

results strongly supported the application of probiotics for improving the mucosal structure, 

thereby fortifying the epithelial barrier integrity to guard against the invasion of opportunistic 

pathogens. Securing the health of the animal allows more resources to be invested for growth 

rather than being depleted to sustain the defence activities. Clearly, a better growth profile 

could be attributed to probiotics via the improvement in the intestinal microstructure.   
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9. Priming the immune function  

Strengthening the immune function has a far-reaching effect on the animals' health 

and growth. Intriguingly, probiotics exhibited a unique spectrum of immunomodulatory 

properties not seen in antibiotic treatments. In recent years, probiotics have been exploited 

for their immunostimulatory effects and stress-relieving properties in aquatic animals [31, 264, 

459-461]. Probiotics represent a promising alternative to chemotherapeutics for prophylaxis 

against infectious diseases affecting shrimps [461]. Similar to the concept of vaccination, 

probiotics can act as immunostimulants to boost the animals' immune systems and augment 

their resistance to infectious diseases and environmental stressors [462-466].  

Although one may argue that stimulating the immune function may be an energy-draining 

exercise, in the desired scenario, immunostimulants should not trigger a massive immune 

reaction in the host. On the contrary, immunostimulants expedite the innate immune response 

by enhancing the recognition and elimination mechanisms of a wide array of foreign 

substances and infectious agents [461]. This is achieved by stimulating the immune function 

via the introduction of pathogen-associated molecular patterns (PAMPs). The cell surface 

components of probiotic bacteria, such as peptidoglycans, lipopolysaccharides (LPS), 

lipoteichoic acid, and glucans, act as immunostimulants and form complexes with the pattern 

recognition protein (PRPs) in the host. 11 PRRs have been identified in shrimps [467]. Each 

PRR exhibits different binding specificity and effector functions [467, 468]. Nonetheless, the 

formation of the PAMP-PRR complex constitutes a key event to activate the immune 

response, leading to the upregulation of immune gene expression and thereby improving 

immune function [123, 469-471]. This mechanism aids the animal to appear in the best state of 

defence. Therefore, upon pathogen invasion, the animal can elicit an immediate defence to 

clear the pathogen [472-474].  

Figure 5. The innate immune system of shrimps. The modulatory effects of probiotics have been bracketed. 
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Shrimps lack an adaptive immune system, in which their immunity is heavily 

dependent on the innate immune response that plays a pivotal role in driving the defence 

mechanisms [475]. Although the existence of immune memory in shrimps remains 

controversial due to the lack of memory cells and immunoglobulin (antibody) production, 

recent findings proved that some forms of immune memory do exist in shrimps [476-478]. Ideas 

such as ‘immune priming’, ‘quasi-immune response’, and ‘trained immunity’ further 

supported the rationale of this argument [477, 478]. The prophenoloxidase (proPO) system is 

one of arthropods' most well-defined defence mechanisms (see Figure 5). Briefly, the PAMP-

PRP complex triggers the serine protease cascade and catalyses the proteolytic cleavage of 

proPO, which eventually culminates in the release of the terminal enzyme PO. The released 

PO actively mediates several critical reaction pathways, including melanin synthesis, 

cytotoxic reactant liberation, phagocytosis, encapsulation, and nodule formation [479-484]. 

Notably, the serine protease, peroxynectin, and proPO expressions in shrimps-fed 

probiotics are substantially higher than those in the control group and antibiotic 

oxytetracycline-treated group [33]. The activity of immune enzymes, such as PO and lysozyme, 

was also significantly elevated following probiotic feeding [33, 129, 134, 485]. Lysozyme is an 

effective antibacterial agent that kills the invading pathogens by disrupting the peptidoglycan, 

which leads to the building up of osmotic pressure within the pathogen and eventually 

ruptures the cell [486]. Besides, the introduction of probiotics such as Bacillus sp. has been 

shown to elevate the phagocytic activities in different shrimp species, such as P. monodon 
[487] and L. vannamei [123]. The immunostimulatory effect of probiotics effectively reduces 

the mortality rates of shrimps when confronted by common pathogens such as A. hydrophila 
[488], V. parahaemolyticus [95, 123, 182, 218, 443, 489], V. harveyi [35, 212, 490], Vibrio alginolyticus [125, 

491, 492], Pseudomonas aeruginosa [493] and white spot syndrome virus (WSSV) [134].  

In proportion to the increment of phagocytic activity, the liberation of reactive oxygen 

species (ROS) such as reactive oxygen intermediate (ROI), singlet oxygen (O2·), hydroxyl 

ions (OH-), hydroxyl radical (·OH), hydrogen peroxide (H2O2) and superoxide anion radical 

(O2
-·) may be the culprits for oxidative damage in the body [38, 494]. Fortunately, probiotic 

addition also induced the secretion of antioxidative enzymes such as catalase (CAT), 

superoxide dismutase (SOD) and glutathione peroxidase (GPx) to enhance the clearance 

efficiency of pathogens and safeguard the general wellbeing of the animal [35, 123, 495]. To 

illustrate, Duan et al. [129] demonstrated that dietary inclusion of C. butyricum probiotic 

effectively improved the total antioxidant capacity (T-AOC) of L. vannamei. The 

antioxidative mechanisms of probiotics have been clearly detailed in the recent work of Wang 

et al. [496]. Additionally, the introduction of C. butyricum probiotic significantly increased the 

inducible nitric oxide synthase (iNOS) and heat shock protein (HSP) gene expression of L. 

vannamei under ammonia stress. HSP70 is a vital regulator for signalling pathways and 

protein homeostasis, thus rendering a protective effect to shrimps against environmental 

stressors [497]. On top of that, priming the immune system also diminishes the shrimps’ 

susceptibility to environmental stressors, including ammonia and oxidative stress [96, 99, 129, 
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290, 450, 498]. The synergistic improvement in both the antioxidant and innate immune defence 

systems irrefutably promotes shrimps' health and growth performance.  

In general, the immunomodulatory effect of probiotics is clearly established. 

However, discrepancies in results may be discernible between studies which are likely 

attributed to the differences in study designs, probiotic strains, dose, duration of treatment, 

shrimp species, growth phase, and environmental factors [95]. Augmenting disease resistance 

is critical to secure optimal growth as the shrimps affected by diseases typically display 

symptoms such as highly necrotic tissues, inactivity, anorexia, and poor growth [495]. Careful 

consideration needs to be taken when designing probiotics as immunostimulants. Proper 

mitigation is necessary to establish a more robust immune function of shrimp while avoiding 

the overactivation of the immune response, which may lead to the direct opposite effect [75, 

461]. Overstimulation of the immune system will cause detrimental consequences such as 

unregulated generation of immune effectors leading to the depletion of immune components 

and eventually culminating in immune exhaustion. Besides, prolonging the immune response 

unnecessarily may incur a massive energy cost to regenerate the immune components, which 

may draw resources away from sustaining other physiological processes and thus negatively 

impact animal growth [461]. Clearly, a rigorous testing protocol is important to assess the large 

assortment of immune indices pertinent to the specific shrimp species targeted. Long-term 

data covering the entire production phase is also critical to evaluate the suitability of 

probiotics as immunostimulants [461]. Despite the complexity of the immune system, 

probiotics can be exploited as an effective means to enhance growth if properly utilized. 

10. Altering the growth-related genes expression  

In the context of decapod crustaceans, the shrimps’ development is an intermittent 

process interrupted by the recurring moult cycle [499]. The muscle tissues in shrimps undergo 

frequent dramatic remodelling across each moult cycle. The shrimp experiences a 

characteristic deliberated atrophy during the pre-moult phase, followed by significant muscle 

growth in the early post-moult phase to fill up the available space before the hardening of the 

exoskeleton [499-501]. Regulation of the moulting process is greatly dependent upon the 

coordination of growth-related hormones, such as 20-hydroxyecdysone (20E) and crustacean 

hyperglycaemic hormone (CHH) [502, 503]. Endogenous factors such as the inherent hereditary 

genetic and hormonal factors also contribute to the variation in growth [504]. Irrefutably, the 

investigation of the influence of probiotics on the metabolism and growth profile of shrimp 

remains incomplete without looking into their effect on these pathways.   

Dietary supplementation of probiotics represents a novel approach to intervening with 

the metabolic function of aquatic animals to promote growth [504-507]. Growth-related gene 

expressions can therefore serve as surrogate markers for growth status. Their expression 

levels in tissue samples can be quantitated using real-time polymerase chain reaction (RT-

PCR) [504, 508]. Duan et al. [180] investigated the effect of probiotic supplementation on the 

expression levels of immune and digestive-related genes in L. vannamei. Results show that 

the expression levels are higher in the group fed with C. butyricum than in the control group 
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[180]. Besides, the introduction of C. butyricum remarkably up-regulated the genes in the 

mechanistic target of the rapamycin (mTOR) pathway, which includes the target of 

rapamycin (TOR), eukaryotic translation initiation factor 4E-binding protein (4E-BP), 

eukaryotic translation initiation factor 4E (eIF4E1α) and (eIF4E2) in L. vannamei. The 

mTOR pathway is a key regulatory centre for growth through the mediation of the moulting 

process, protein synthesis, nutrient transport, immune response, cell proliferation, autophagy 

and cell apoptosis [130, 509-516]. Notably, these changes correlated with the significant 

improvement of growth parameters like weight gain, SGR and FCR in the probiotic treatment 

group. By contrast, the control and cell-free fermentation supernatant group treatment group 

with low expression of eIF4E1α and eIF4E2 portrayed a poorer growth profile. The results 

imply the significance of the mTOR pathway associated with growth performance [130].  

KEGG enrichment analysis revealed that administering probiotic strain with a high 

adhesive ability to the intestinal mucosa significantly increased the differential expression of 

proteins involved in metabolic regulation, immune processes, and cell signalling pathways. 

Immune pathways were activated, such as endoplasmic protein processing, oxidative 

phosphorylation, mitogen-activated protein kinase (MAPK), and mTOR signalling pathway 
[162]. Moreover, feeding L. vannamei with C. butyricum-enriched diet also significantly 

increases immune deficiency (Imd) and Toll genes expression [129]. Imd and toll pathways 

are two primary components of the shrimps’ immunity which mediate the antagonising action 

against the Gram-negative and Gram-positive bacteria via the production of various 

antimicrobial peptides (AMPs) [517]. Besides, cell signalling machinery for calcium, oxytocin, 

wingless-related integration site (Wnt), and forkhead box protein O (FoxO) signalling 

pathway in L. vannamei was enhanced [162]. Du et al. [162] substantiated the involvement of 

cell surface proteins in mediating the modulatory effects of probiotics in shrimps by 

demonstrating the comparatively insignificant alteration to the proteomic and histological 

parameters when lithium-chloride (LiCl)-treated probiotics were introduced to the shrimps 

instead. LiCl was applied to detach the cell surface proteins non-covalently bound to the 

probiotic cell surface. However, documentation on the molecular mechanisms of probiotics 

in shrimps is somewhat limited.  

From another perspective, growth hormone (GH) is one of the rate-limiting enzymes 

that play a pivotal role in glycolysis, lipolysis, protein synthesis, cell proliferation and 

immune response regulation [461, 504, 518-521]. The effect of GH is mediated through the 

expression of insulin-like growth factor-1 (IGF-1) [505, 508]. IGF-1 positively regulates animal 

growth through the direct stimulation of cell proliferation and differentiation [504]. Functional 

studies associated IGFs with metabolic control in crustaceans [522]. IGF-1 is a primary 

indicator gene for somatic growth [523]. The positive correlation between IGF-1 and animal 

growth rate has consistently been proven [523-525]. Through a series of periodic dietary 

restrictions and reintroduction of diet, Montserrat et al. [526] demonstrated the association 

between IGF and the nutritional status of the animal. Although molecular data on the effect 

of probiotics in the shrimp model is lacking, information gathered from other aquatic species 

suggests that gene expression modulation can be regarded as a highly probable growth 
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promotion effect of probiotics in shrimps. For instance, adding L. rhamnosus to the rearing 

water yielded a remarkable elevation of IGFs expression and increased the average body 

weight of treated A. ocellaris by 3-fold [525]. Long-term dietary supplementation of L. 

rhamnosus likely accelerates growth by modulating growth-promoting factors such as IGFs, 

retinoic acid receptor γ (rarγ) or peroxisome proliferator receptors [527].  

Although reports gathered from other aquatic species can be used for cross-references 

in the speculation of the molecular mechanisms of probiotics in shrimp, it should be noted 

that the growth promotion effect in relation to myostatin (mstn) expression in the vertebrates 

may not be directly modelled to shrimps. Mstn, also known as growth differentiation factor-

8 (GDF8), a member of the transforming growth factor-ß (TGF-ß), is typically noted as a 

negative growth regulator in the vertebrates due to its recognised function in inhibiting 

myoblast proliferation [528, 529]. The administration of Lactobacillus sp. and Bacillus spp. 

probiotics have been reported to lower the level of mstn while increasing the growth of D. 

labrax [524] and sea bream (S. aurata) [525], respectively. Unlike mammals, mstn can be found 

not only in muscular tissues but also widely expressed in non-muscular tissues, including 

eyestalk, thoracic muscle, heart, gill, abdominal ganglion, abdominal muscle, intestine, 

hepatopancreas and swimming leg of shrimps. The highest expression of mstn concentrates 

in the heart and abdominal muscle [499-501, 530, 531]. The ubiquitous expression of mstn in 

different tissues may suggest that the mstn ortholog in shrimp may have other functions as 

that in the vertebrates. The mstn ortholog in shrimp was found to perform the opposite role 

to those in the vertebrates [499-501]. A decline in mstn transcripts in the abdominal, pereiopod, 

and pleopod muscles of shrimps was detected with the introduction of 20-hydroxyecdysone 

(20E), thus propounding the involvement of mstn in the moult cycle [501]. Results also imply 

that mstn expression may be regulated by hormones [499, 501]. Significant elevation of mstn is 

common in the early post-moult phase and gradually down-regulated following the moulting 

phase [499]. Increased expression of mstn was found to positively regulate the growth of L. 

vannamei [530], P. monodon [500], freshwater shrimp Macrobracium nipponense [499], and F. 

chinensis [532]. On the contrary, reduced expression of mstn featured a significant stagnated 

growth pattern [500]. Thereby, it is essential to note the different functions of orthologs when 

mapping findings across species.  

Recent studies through the genome-wide association approach successfully identified 

several novel genes and single nucleotide polymorphisms (SNPs) associated with the growth 

trait of shrimps, namely the L. vannamei class C scavenger receptor (LvSRC) [533], L. 

vannamei insulin growth factor binding gene-1 (LvIGFB1) [534], L. vannamei 

myostatin/growth differentiation factor (Lvmstn/GDF11) [530], ras-related protein (Rap-2α) 

and the delta type protein kinase C (PKCδ) [535]. Future research can investigate the effect of 

probiotics on these growth-related genes to validate the correlation between gene expression 

and the growth promotion effects of probiotics (see Section 13).   
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11. Increasing feed intake  

Growth is an index for a multitude of parameters. Besides the immune status, nutrition 

is an indispensable factor. Another growth promotion factor of probiotics may stem from 

their effect in encouraging feed intake by shrimps. Probiotics have been reported to stimulate 

the appetite of animals, thereby allowing more resources to be allocated for growth [208, 211]. 

However, the reason behind the improved appetite is yet uncertain. The increased appetite 

may probably be associated with the effect of probiotics in improving nutrient digestibility 

(see Section 7) [156, 208]. Otherwise, increased feeding may arise from the improved 

attractiveness and taste of feed supplemented with probiotics [208]. Huynh et al. [536] surmised 

that some attractive compounds produced by synbiotics trigger increased feed intake. 

Recently, proton magnetic nuclear resonance (1H-NMR) based metabolomic analysis 

identified that three metabolites out of the total 22 compounds detected were significantly 

higher in concentration in the hepatopancreas of shrimps treated with synbiotics compared to 

that of the untreated cohort. These three compounds are betaine (an organic osmolyte), 

inosine monophosphate (IMP) (a nucleotide), and valine (an essential amino acid) [537]. 

Interestingly, betaine is a common chemoattractant applied to prompt feeding in aquaculture. 

Thus, synbiotics/probiotics can act as betaine enhancers and initiate shrimps' feeding 

response. Furthermore, betaine plays a central role in DNA methylation, modulating gene 

expression, and regulating cell proliferation and differentiation [537, 538]. 

From another perspective, it is also hypothesised that the secretion of antinutritive 

compounds, SCFAs (see Section 6.1), and vitamins (see Section 6.2) by the probiotics may 

contribute to a better appetite [208]. Although in-vivo studies in shrimps are limited, da Silva 

et al. [269] demonstrated that SCFA introduction resulted in a substantial increase in feed 

intake, phosphorous availability, and higher apparent gross energy in shrimps. In another 

experiment, SCFA, specifically sodium propionate, was observed to demonstrate a 

remarkable dose-dependent effect in elevating the expression of ghrelin (ghrl) in zebrafish 
[254]. Ghrl is a gene encoding the orexigenic ghrl hormone that stimulates feed intake and 

regulates weight gain [539]. However, the up-regulation of ghrl may not always correspond to 

higher feed intake [523]. To illustrate, the report from Santos et al. [523], which portrayed the 

upregulation of the ghrl gene in zebrafish following the 30-day administration of transgenic 

phytase-expressing probiotics, recorded significant growth enhancement in zebrafish without 

significantly increasing feed intake. This may be attributed to the multifunctional facets of 

ghrl. Ghrl is not only an orexigenic hormone (appetite stimulant); it is also actively involved 

in homeostasis regulation and other physiological processes [523, 540]. 

Most importantly, it should be noted that not all probiotics can lead to elevation of 

ghrl gene expression, better appetite, or increased feed intake. For example, Falcinelli et al. 
[541] recorded the appetite suppression effect of probiotic Lactobacillus rhamnosus, which 

could be harnessed for managing glucose intolerance. Therefore, the selection of good 

probiotic strains for the intended result should be treated with circumspection. Future 

research can also look into the effects of probiotics in regulating the expression of other 
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appetite-related factors in shrimps, including neuropeptides (npy) such as moult-inhibiting 

hormone-like neuropeptide (rMIH-B) and cholecystokinin (cck) [542-544].  

12. Environmental bioremediation  

As far as aquaculture is concerned, the quality of the rearing environment is a key 

index for growth. Water quality parameters such as temperature, salinity, pH, dissolved 

oxygen, and chemical composition of water are essential factors in the health status of 

shrimps [93, 189]. Fluctuations of these variables might inflict stress upon the animals, alter 

their normal physiological functioning and ultimately affect the growth performance of the 

animals [164, 168, 545-547]. Environmental changes can impose selection pressure on microbial 

populations in culture water, which indirectly mould the gut microbiota of aquatic animals 
[548-550]. Notably, Zhao et al. [168] documented that water quality accounts for nearly one-fifth 

of the variations of gut microflora in shrimps. This suggests that besides the direct modulation 

of the water quality measures to favour the growth of shrimp, probiotics also indirectly aid 

in disease control by dictating the bacteria composition in water [37, 551].  

The growth promotion effect of probiotics with regard to water quality could be 

comprehended through the involvement of the microbial population in manipulating the 

nitrite and ammonia levels in the rearing water, which are common end products of nitrogen 

catabolism. Certain species of bacteria are endowed with the nitrifying potential to convert 

nitrite and ammonia into nitrate, which is a less toxic form [147, 241, 552, 553]. In this regard, 

Gram-positive bacteria often demonstrated better efficiency in the decomposing organic 

matter when compared to their Gram-negative counterparts [241, 554]. This nitrification process 

also indirectly improved the pH level of water through the secretion of hydrogens as by-

products [147, 210, 555]. Besides, this process also facilitates the turnover of carbon and 

nitrogenous compounds and increases nutrient availability to support growth [556]. Stemming 

from the aspects narrated, ameliorating water quality may account for the growth promotion 

phenomenon evinced by probiotics.  

13. Future perspectives  

As one of the fastest-growing industries worldwide, aquaculture is a key insurer for 

global food security [557]. Besides addressing the food security crisis, a steady supply of 

aquaculture produce would eventually culminate in a promising economic prospect for the 

global aquaculture industry. Creative strategies have been applied to intensify aquaculture 

production to meet the global demand. However, the progressive development of the AMR 

catastrophe resulted in the exigency for an alternative to the antimicrobial growth-promoting 

agent. Nevertheless, the state-of-the-art probiotic application as growth promoters in 

aquaculture witnesses several critical knowledge gaps. To illustrate, a vast array of the 

available studies involving probiotics were products of the empirical observational approach, 

whereas reports on the mechanistic molecular studies in shrimps are meagre [239]. Only a 

handful of studies concerned genomic studies in aquaculture animals. In recent years, 

genome-association studies are gradually replacing marker-assisted selection (MAS) in 
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selecting quality crops and animals for breeding. Gene-assisted selection (GAS) offered an 

added edge to MAS due to its higher accuracy and efficiency in selecting beneficial growth 

traits in animals [535, 558-563]. Several genes associated with body weight, metabolism, 

immunity regulation, moulting cycle, apoptosis, cell migration, and cytoskeletal 

arrangements have been listed in Section 10. Since the heritability factor can account for 24 

to 52% of growth traits, therefore, introducing probiotics inducible to the growth-related 

genes to the livestock bred from selective broodstock would synergistically boost farm 

production yield [535, 562, 564, 565].  

From another outlook, the progressive unveiling of the knowledge regarding the gut 

microbiome and its interaction with host physiology will increase the appreciation for 

probiotic application in aquaculture. Over the past few decades, the slow implementation rate 

of probiotics in aquaculture may partly be ascribed to the paucity of technological advances 

and research expertise [566]. Only a tiny fraction of bacteria in the biosphere can be cultivated 

using conventional culturing techniques [567-569]. Since there is a tremendous underestimation 

of the gut microbiome diversity, many key players in the gut still exist in the dark, and their 

actual roles and relations to the growth performance of the host are yet to be disclosed. 

Nonetheless, the popularization of molecular-based methods and their increasing 

affordability reignited great research interest in this arena. Next-generation sequencing 

(NGS), 16S rRNA sequencing, denaturing gradient gel electrophoresis (DGGE), temperature 

gradient gel electrophoresis (TGGE), fatty acid methyl ester (FAME) analysis and terminal 

restriction fragment length polymorphism (T-RFLP) are some prominent examples of the 

culture-independent techniques [570-573]. Revealing the microbiome diversity extends the 

frontiers of human understanding in the microscopic province. When viewed concurrently 

through the lenses of other omics such as metabolomics, proteomics, transcriptomics, and 

metagenetics, new insights will surface [573]. Mastering the mechanics of the microbiome will 

undoubtedly pave the way for more sophisticated research endeavours.  

When the technical hurdles are triumphed over by technological advancement and 

assiduous research effort, probiotics can be effectively tailored as growth promoters in 

aquatic livestock. Unravelling the mechanisms of probiotics' growth promotion effect helps 

clarify the selection criteria when shortlisting putative strains as growth promoters. In other 

words, the growth-promoting factors elaborated on in this review could form the basis for the 

growth-promoting probiotic strain selection. For instance, the ability to secrete metabolites 

and digestive enzymes of probiotic strains could be screened through in-vitro assays. Strains 

exhibiting antimicrobial resistance could be excluded for further testing. Small-scale in-vivo 

pilot runs can focus on studying the effects of probiotics on gut microbiota, immunity, midgut 

histology, digestive enzyme activities and growth-related genes expression to provide a 

preliminary abstraction of the growth-promoting effect of promising probiotic strain [222, 566, 

574, 575]. This approach could effectively increase the efficiency of designing growth 

promoters for shrimps. Thereby, less promising candidates could be eliminated, whereas 

more potential strains could proceed for larger-scale validation [576]. Besides the widely 

applied probiotics such as Firmicutes, Bacteroidetes and Proteobacteria, the Actinobacteria, 
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marine purple non-sulphur photosynthetic bacterium, salt pan bacteria, and other bacteria 

from varying sources are also potential candidates for aquaculture application lie in wait for 

further bioprospection [96, 104, 577-586]. 

14. Conclusion 

Introducing probiotics opens a new vista for promoting animal growth and curbing 

infectious diseases in the aquaculture industry. Although large-scale implementation data is 

still lacking, studies have attested to probiotics' positive effects in improving shrimps' growth 

performance and survival rate. Different probiotics may trigger animal growth through 

distinct mechanisms (see Figure 6). This paper condenses the outcomes of empirical 

observational studies on probiotics revolving around shrimp models. The most notable 

changes induced by probiotics are reflected in the gut microbiota. Probiotics introduction 

helps increase the microbiota population's diversity and suppress the pathogenic strains. 

Probiotics also contribute to the growth promotion effect by aiding the establishment of 

healthy and functioning gut microbiota. The results of probiotics are closely associated with 

the secretion of bioactive compounds such as SCFAs, vitamins, and polyamines. These 

bioactive compounds act as growth factors for the animal. Besides supplying exogenous 

enzymes, the administration of probiotics has been noted to stimulate the secretion of 

endogenous digestive enzymes. This is consistent with the histological changes in the 

hepatopancreatic tubules. Morphological changes reflected in the midgut region, particularly 

the increase in intestinal villi height and numbers, increased the total surface area for nutrient 

absorption. 

In contrast to AGPs, probiotics could act as immunostimulants that prime the immune 

system in the animal and confer a better resistance to infectious disease. Mitigating the risk 

of illness helps to conserve energy directed for growth. Additionally, probiotic additives tend 

to increase feed intake in animals. A higher nutrient input also contributed to animal growth. 

Body metabolism, in particular, the catabolic activities, are postulated to increase, which is 

coherent with the increase in the expression of growth-related genes and proteins. Last but 

not least, several probiotic strains are equipped with environmental ameliorative effects. 

Probiotics modulate the microbial composition in the water. This indirectly mediates critical 

parameters such as ammonia and nitrate, thus relieving the chemical stresses inflicted on the 

shrimps to create a conducive environment to support animal growth. To summarise, the 

factors contributing to growth discussed in this review should not be viewed as fragmented 

events. Condensing the constellation of results generated from the multitude of observational 

studies regarding the effects of probiotics in shrimps helps to offer a better picture of the 

growth promotion effect of probiotics. The information provides a more coherent overview 

of the potentialities of probiotic application in aquaculture and dictates the knowledge gap in 

state-of-the-art research. Understanding the growth promotion effect of probiotics about the 

critical features of AGPs helps to quicken the quest for alternative growth-promoting agents 

that will be a boon to the aquaculture industry. 
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Figure 6. Mechanisms of probiotics in promoting animal growth.  
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