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Abstract: Biofilms form protective layers over bacteria that are associated with a majority of the hospital infections 
contributing to antibiotic resistance development in susceptible strains. Nowadays, there is a pressing need for developing 
effective anti-biofilm agents to help address the growing problem of biofilm-producing bacteria associated with antibiotic 
resistance. In recent years, zinc oxide nanoparticles (ZnO-NPs) has emerged as a prospective candidate for new anti-biofilm 
agents.  The present method paper described an optimized anti-adherence and anti-biofilm assay using ZnO-NPs. The 
antibiotic-resistant bacteria Methicillin-resistant Staphylococcus aureus (MRSA ATCC4330) and vancomycin were used as 
the growth control and positive control, respectively. The result showed concentration-dependent anti-adherence and anti-
biofilm activity. The ZnO-NPs effectively prevented attachment of bacterial cells onto walls of wells with 51.69 ± 2.55% at 
the highest concentration tested (65.4 µg/mL). ZnO-NPs was also able to break-up 50% pre-formed MRSA biofilm at the 
lowest concentration of 13.5 µg/mL. Interestingly, ZnO-NPs at lower concentrations demonstrated significantly stronger anti-
biofilm activity than that of the positive control vancomycin, demonstrating that ZnO-NPs is a promising anti-biofilm agent. 
This method could be used as a preliminary screening of transition metal oxide nanoparticles as potential anti-adherence and 
anti-biofilm agents followed by other specific anti-biofilm assays.   
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Introduction
Over the course of history, nature through its subsidiary 
plants and microbes, has proven to be an essential player 
in driving development of future drugs by virtue of their 
potential in producing secondary metabolites with anti-
bacterial, anti-cancer, anti-oxidant and neuroprotective 

activities[1–18]. Even to this day, nature continues to 
instill its significance in society as a prominent resource 
for future antibiotics in treating antibiotic-resistant 
infections[19]. Despite the use of current antibiotics, 
infectious diseases acquired either in hospitals or through 
consumption of foods contaminated by food-borne 
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pathogens[20–26] remain a major public health problem. 
Additionally, the unscrupulous practice of antibiotics for 
various ailments has encouraged antibiotic-susceptible 
infectious bacteria to form natural defenses against 
them. One such defense established by these bacteria is 
the biofilm[19]. 

Biofilm is a term that describes a community of 
microorganisms within a self-produced matrix of 
biopolymers attached on surfaces[27]. Microbes tend to 
produce biofilm on surfaces evading harmful effects of 
antibiotics as well as detergents and persists in hospitals 
causing many internalized hospital-related infections. It 
was estimated that biofilm contributes to approximately 
60 to 80% of hospital infections[28–30]. Given that 
Staphylococcus aureus normal flora is the skin, suggests 
that it is among the most common causative agent in 
hospital-acquired infections associated with medical 
implants[31,32]. Moreover, it was shown that S. aureus 
was tolerant against higher doses of antibiotics and may 
thus contribute to development of antibiotic resistance in 
susceptible strains[32]. 

Recent years has seen a growing interest in the study of 
biofilm inhibitors acting as adjuvant agents in reducing 
biofilm layer of pathogenic bacteria[33]. This has led to the 
use of anti-biofilm assays to identify alternative sources 
as potential inhibitors of microbial biofilm. Previous 
studies have highlighted the antibacterial potential of 
transition metal oxides for crop protection[34] and disease 
eradication[35–37]. Nanoparticles especially those of 
metallic nature are one of the newest emerging systems 
which have great potential in inhibiting the formation 
of biofilms accredited to their high anti-microbial and 
anti-bacterial properties. The use of nanoparticles as 
anti-biofilm agents have found its way in many different 
sectors such as in healthcare (drug delivery, therapeutics 
and dentistry) or even in the food industry with a plethora 
of tailored applications[38,39].

The potency of these metallic nanoparticles in resisting 
the production of biofilm is high due to its nanoscale size 
and active participation in most of the stages in biofilm 
production. If the nanoparticles can successfully prevent 
adherence of microbes, then cycle of biofilm production 
is halted from the start. Sometimes, these nanoparticles 
disrupt the biofilm at the proliferation or even maturation 
stages, generally through the formation of radicals and 
reactive oxygen species (ROS) which affects gene 
expressions and breaks DNA strands[40]. In this context, 
the ZnO-NPs were chemically synthesized using a zinc 
nitrate precursor and subsequently characterized to 
confirm its identity. This includes conducting elemental 
analysis, Fourier-transform infrared spectroscopy and 
morphological analysis using electron microscopy. The 
ZnO-NPs synthesized as an anti-adherence and anti-
biofilm agent have nanorice morphologies and have an 
average size of 250 nm.

The aim of this methodology article is to present step-by-
step and optimized anti-adherence and anti-biofilm assays 
to evaluate the efficacy of ZnO-NPs as anti-adherence 
and anti-biofilm agents[41] (Figure 1). To validate the test 
method, Methicillin-resistant Staphylococcus aureus 

(MRSA) ATCC 43300 and vancomycin hydrochloride 
were used as the control bacteria and positive control, 
respectively. The experiment set-up consisted of a 96-
well plate with a flat bottom, crystal violet as a staining 
agent and a 96-well microplate reader for quantification 
of both the anti-adherence and anti-biofilm activities. The 
result obtained indicate ZnO-NPs has anti-adherence and 
anti-biofilm properties against MRSA ATCC 4330. Given 
that crystal violet anti-adherence and anti-biofilm assay is 
an indirect measure of biofilm biomass, this study could 
be used as a preliminary screening to investigate the anti-
biofilm properties of transition metal oxide nanoparticles 
prior to studying the mechanism of action of anti-adherence 
and anti-biofilm properties.

Method Details

Synthesis of ZnO-NPs

A weighted measurement of 1.90 g of zinc nitrate 
hexahydrate (Zn(NO3)2.6H2O) is first dissolved in 100 mL 
of ultrapure water under constant stirring. Subsequently, 
the pH of the mixture was adjusted to pH 10 using 1M of 
sodium hydroxide (NaOH) solution. Next, the solution is 
heated for 1 hour at 85°C under continuous stirring. The 
white suspension was then centrifuged for 5 minutes at 
7000 rpm. Upon removing the supernatant, the residue is 
washed with distilled water and then subjected to another 
cycle of centrifugation before removing the supernatant 
again. The residue was then dried in an aerated oven at 
60°C overnight, yielding a white powder.

Anti-adherence and Anti-biofilm Assay

Materials

• Biosafety level 2 cabinet, functional incubator, 
96-wells microplate reader

• Sterile disposable consumables: 96-wells microtiter, 
15 mL centrifuge tubes

• Bacterial cells (American type culture collection 
strain- ATCC)

• Bacteria nutrient-rich media. The use of Tryptic soy 
broth (TSB) which contains glucose and stimulates 
biofilm formation especially with Methicillin-resistant 
Staphylococcus aureus. 

• Aqueous crystal violet (0.1% w/v)

• Glacial acetic acid (30% v/v)

• 1×Phosphate buffer saline

• Multichannel pipette (preferable)

• Vancomycin hydrochloride drug as the positive control

• Zinc oxide nanoparticles (ZnO-NPs) prepared in 
different test concentrations

Procedure

Bacterial culture preparation

Inoculate 3 to 5 pure colonies of MRSA ATCC43300 from 
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the culture plate into 15 mL TSB. Revive the bacteria 
in the shaker incubator at 200 rpm and at 37°C for 
18 to 24 hours prior to the experiment so that they 
are preferably in their log phase of growth. Ensure 
sterile TSB is used by autoclaving TSB at 121°C for 
15 minutes.

Anti-adherence Assay

1. Inoculate 50 μL of ZnO-NPs and vancomycin 
into designated wells at a series of concentration. 
(vehicle control e.g. DMSO is also needed to be 
aliquoted into appropriate wells if used as the 
diluent for the test substance) 

2. Prepare a bacterial suspension (~1 x 108 CFU/mL 
equivalent to UV absorbance reading of 0.08 to 
0.1 with wavelength at 600 nm) in 15 mL from 
a 24-hour bacterial culture. Alternatively, a 0.5 
McFarland standard can be used to determine 
the optimal bacterial suspension. Make a 1:100 
dilution in a separate centrifuge tube to obtain a 
106 CFU/mL bacterial suspension.

3. Add 50 μL diluted bacterial concentration in 
respective wells using an appropriate multichannel 
pipette. Using a multichannel pipette is a faster 
and more efficient mean of adding the bacterial 
suspension into the wells.

4. Add sterile distilled water to the 4 corners of the 
microplate to prevent evaporation of water from 
the test wells. Evaporation of water in test wells 
can interfere with the results. Alternatively, the 
microplate can be kept in a container placed with 
moist filter paper during the incubation. 

5. Cover the plate with the lid and place the plate in 
an incubator at 37°C for 18 to 24 hours.

6. Take the 96-well plate out from incubator and 
slowly remove the TSB either by decanting 
or pipetting. Rinse the plate thrice with sterile 
double distilled water and allow the plate to air 
dry under the biosafety cabinet. Turn the plates 
upside down to hasten the process of drying. 
Ensure it is dry before moving on to the next step.

7. Dispense 100 µL of aqueous crystal violet (1% 
w/v) into the test wells and let it stain the bacterial 
cell walls for 10 to 15 minutes. Decant the crystal 
violet either into a sink or onto clean disposable 
tissues.

8. Rinse the test wells three times with sterile double 
distilled water and allow the wells to dry under 
the biosafety cabinet. Alternatively, the plate can 
be bathed subsequently with 3 dishes of water.

9. Add 30% (v/v) glacial acid in water to solubilize 
crystal violet and leave it standing for 15 minutes. 
Ensure there is clear blue/violet solution with no 
visible residue in each of the test wells.

10. Read the UV absorbance of all the wells at 570 
nm (suggested range would be between 570 to 

600 nm)

11. Calculate the anti-adherence activity of test substance 
and vancomycin using the following formula:

Anti-biofilm Assay

1. Follow the steps stated in bacterial culture preparation 
and step 2 in anti-adherence assay to prepare 106 CFU/
mL bacterial suspension. Inoculate 100 μL of the diluted 
bacterial suspension in TSB into respective well of a 
new 96 well microplate.

2. Incubate the plate at 37oC in an incubator for 24 hours. 

3. Decant the TSB broth completely from the microplate, 
wash the well gently without disrupting the biomass 
formed attaching on the bottom and wall of the wells 
with sterile phosphate buffer saline (PBS) 3 times.

4. Add in 100 µL of freshly prepared sterile TSB broth 
(control well), ZnO-NPs suspended in TSB with test 
concentrations and TSB containing the vancomycin in 
test concentration.

5. Repeat the steps 5 to 10 from the above anti-adherence 
assay protocol.

6. Calculate the anti-biofilm activity of the test substance 
and vancomycin using the following formula:

Method Validation

Determination of Biofilm Formation

Based on the protocol, biofilm formation was indicated by 
the violet stains. This show that TSB media was adequate 
for biofilm formation whilst 0.1% (w/v) concentration of 
crystal violet was sufficient for visible observation with the 
naked eye and quantification by the spectrophotometer. 

Assessment of Anti-adherence Assay

This protocol allows the determination of anti-adherence 
property of ZnO-NPs versus vancomycin using the 96-well 
plate. The biomass of the bacterial cell was quantitatively 
analyzed on the microplate reader at absorbance of 570 nm 
showing a decreasing trend of biomass attachment with 
increasing concentrations of ZnO-NPs tested. The result 
show that ZnO-NPs at 65 μg/mL achieved a significant anti-
adherence activity of 51.69 ± 2.55%. However, vancomycin 
at 0.5 μg/mL did not exhibit significant anti-adherence 
activity when compared to negative control (TSB only) 
(Figure 2).

Anti-adherence activity% = × 100%
Absorbance of control-Absorbance of test sample

Absorbance of control

Antibiofilm activity% = × 100%
Absorbance of control-Absorbance of test sample

Absorbance of control
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Figure 1. Schematic diagram shows the step-by-step protocol of the optimized ant-adherence and anti-biofilm assays. More detailed protocol should refer to the text.
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Figure 2. Anti-adherence assay using vancomycin as positive control and 

MRSA ATCC 43300 as growth control. Experiment evaluated based on qua-

druplicate results with standard deviation. (n = 4, p < 0.05). *indicates signif-

cant difference when compared to negative control (TSB only).

Assessment of Anti-biofilm Assay

This method allowed the determination of anti-biofilm 
property of ZnO-NPs versus vancomycin using the 
96-well plate. The biomass of bacterial cell was 
quantitatively analyzed on the microplate reader at 
absorbance of 570 nm showing significant reduction 
of biofilm when increasing concentration of ZnO-NPs 
used when compared to the control (TSB only). The 
result shows that ZnO-NPs at 54 µg/mL exhibited 
significant anti-biofilm activity of 77.35 ± 2.67%. 
Meanwhile, the anti-biofilm activity of the positive 
control vancomycin was measured at 40 ± 8.39% at 
higher concentration of 100 µg/mL tested (Figure 3).

 

Figure 3. Anti-biofilm assay using vancomycin as positive control and 

MRSA ATCC 43300 as growth control. Experiment evaluated based on qua-

druplicate results with standard deviation. (n = 4, p < 0.05). * indicates sig-

nificant difference when compared to negative control (TSB only).

Conclusion

Collectively, the present study shows step-by-step 
optimized protocol of anti-adherence and anti-biofilm 
assays which incorporate the crystal violet biofilm 
staining method of visualization and quantification of 
biofilm biomass in a 96-well microplate reader. The 
use of 96-well plates has allowed more samples that 
can be tested at any one time and is preferable to be 
carried out post-MIC assessment. 
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