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Abstract: Under the family Actinobacteria, streptomycetes are ubiquitous in nature, producing a wide spectrum of bioactive 
compounds including antibacterial, antioxidant, anticancer and immunomodulatory properties. During a screening programme 
in Malaysia, Streptomyces colonosanans MUSC 93JT was isolated as a novel Streptomyces sp. from the mangrove soil in 
Sarawak. The strain exhibited potent antioxidant activities and cytotoxic activity against several human cancer cell lines. 
Due to these data, the strain was subjected to whole genome sequencing to uncover its genomic potential and further improve 
the understanding of the strain. The genome of MUSC 93JT consists of 7,015,076 bp (G + C content of 69.90%), carrying a 
total of 5,859 protein coding genes. Analysis using a bioinformatics tool, antiSMASH predicted a total of four biosynthetic 
gene clusters which displayed similarity of more than 70% to known gene clusters and one of which was associated with the 
production of a natural protectant, ectoine. Displaying selective toxicity that kills only cancer cells, ectoine has showed its 
potential to be developed as therapeutic agents for humans. Altogether, the current project clearly highlights the importance 
of under-explored environment like mangrove in natural product discovery. The availability of whole genome sequence 
MUSC 93JT warrants subsequent in-depth investigation and optimization for the production of bioactive compounds which 
can be exploited for the health and wellbeing of mankind. 
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Short Introduction

Streptomycetes are filamentous bacteria that can be found 
in various ecosystems and most well-known for their abil-
ity to produce secondary metabolites which can be ex-
ploited for the benefits of mankind[1–7]. For instance, the 
isolation of streptomycin from Streptomyces griseus de-
scribed by Professor Waksman and his team was a major 
breakthrough back in the 1950s, being the first effective 
treatment against the causative agent of the great white 
plague, Mycobacterium tuberculosis[8,9].  Even though 
more than 60 years have passed, drug discovery studies 

investigating bioactive potential of Streptomyces sp. 
from various habitat did not regress, but more efforts are 
now being poured into the investigation of their genom-
ic potential[10–19]. Streptomyces colonosanans MUSC 
93JT was recovered from mangrove forest soil located 
at Sarawak, Malaysia during a screening programme for 
bioactive streptomycetes[10,20]. Forming light yellow aer-
ial and vivid yellow substrate mycelium on ISP 2 agar 
which is a typical trait of streptomycetes, MUSC 93JT

was designated as novel species of genus Streptomyces 
which is closely related to Streptomyces malachitofus-
cus NBRC 13059T (99.2% sequence similarity), Strep-

Copyright © 2020 by Ser H-L and HH Publisher. This work under licensed under the Creative Commons Attribution-NonCommercial 
4.0 International Lisence (CC-BY-NC4.0)

*Correspondence: Kok-Gan Chan, Institute of Biological 
Sciences, Faculty of Science, University of Malaya, 50603 
Kuala Lumpur, Malaysia; kokgan@um.edu.my



2

tomyces misionensis NBRC 13063T (99.1%), and Strep-
tomyces phaeoluteichromatogenes NRRL 5799T (99.1%) 
based on phylogenetic analysis using their 16S rRNA 
genes. Nonetheless, fermentative extracts of MUSC 93JT

displayed potent antioxidant activity and anticancer ac-
tivity against several human colon cancer cell lines with-
out significant cytotoxic effect against human normal co-
lon cells. The type strain for MUSC 93JT is available at 
two culture collection centres with accession of (= DSM 
102042T = MCCC 1K02298T). Based on the biosyste-
matics study using a polyphasic approach, the strain was 
selected for whole genome sequencing to explore its ge-
nomic potential, particularly the production of bioactive 
compounds that are responsible for its anticancer and an-
tioxidant activities[10,21,22]. 

Data description

Genomic DNA of MUSC 93JT was obtained using Mas-
terpure™ DNA purification kit (Epicentre, Illumina 
Inc., Madison, WI, USA) and subjected to RNase (Qia-
gen, USA) treatment[23–25]. Following that, DNA quality 
check was conducted with NanoDrop spectrophotometer 
(Thermo Scientific, Waltham, MA, USA) and a Qubit 
version 2.0 fluorometer (Life Technologies, Carlsbad, 
CA, USA). Construction of DNA library was done using 
Nextera™ DNA Sample Preparation kit (Nextera, USA) 
and the library quality was checked by Bioanalyzer 2100 
high sensitivity DNA kit (Agilent Technologies, Palo 
Alto, CA). Paired-end sequencing was performed on 
MiSeq platform with MiSeq Reagent Kit 2 (2 × 250 bp; 
Illumina Inc., Madison, WI, USA)[26,27]. After trimming, 
the paired-end reads were de novo assembled on CLC 
Genomics Workbench version 7 (CLC bio, Denmark), 
which resulted in 166 contigs and an N50 contig size of 
approximately 99,963 bp. The genome size of MUSC 
93JT comprised 7,015,076 bp, with an average coverage 
of 53.0-fold and G + C content of 69.90 %. The genome 
sequence of MUSC 93JT has been deposited at DDBJ/
EMBL/GenBank under accession of MLYP00000000. 

Table 1. General genomic features of Streptomyces colonasanans MUSC 93JT.

Streptomyces colonasanans MUSC 93JT

Genome size (bp) 7,015,076

Contigs 166

Contigs N50 (bp) 99,963

G + C content % 69.90

Genome coverage 53.0x

Protein coding genes 5,859

tRNA 66

rRNA (5S, 16S, 23S) 3, 1, 1

The assembled genome was annotated using Rapid An-
notation using Subsystem Technology (RAST)[28]. Gene 
prediction was performed using Prodigal version 2.6, 
while ribosomal RNA (rRNA) and transfer RNA (tRNA) 
were predicted using RNAmmer and tRNAscan SE 
version 1.21, respectively[29–31]. The analysis from RAST 
revealed 5,859 protein-coding genes, along with a total 
of 

71 RNA genes (Figure 1). Based on RAST system, most of 
the protein-coding genes were shown to be involved in 
amino acids and derivatives metabolism (9.18%), 
followed by carbohydrates metabolism (6.21%) and 
protein metabolism subsystems (4.91%). Further analysis 
on antibiotics & Secondary Metabolite Analysis SHell 
(antiSMASH) detected presence of 23 biosynthetic gene 
clusters in MUSC 93JT genome using “strict” detection 
settings (version 5.1.1)[32,33]. Among the four biosynthetic 
gene clusters which displayed similarity of more than 
70% to known gene clusters, one cluster was associated 
with the production of ectoine (75 % gene similarities). 
Ectoine is commonly expressed by bacteria to survive 
in harsh environments, protecting these microorganisms 
against extreme osmotic stress[34–38]. As a compatible 
solute, ectoine has been shown to be safe as it does not 
interfere with the host’s metabolism while offering some 
beneficial effects including antioxidant and protection 
against ionizing radiation[39–42].  Apart from that, a recent 
study by Sheikhpour et al. (2019) showed that ectoine 
induced apoptosis in lung cancer cells without affecting 
normal cells. As a natural protectant, ectoine seems to be 
a promising protective agent to be developed for human 
use, particularly against chronic inflammatory diseases 
and cancer[43,44]. On top of that, there has been many stud-
ies reported ectoine-based spray or lozenges showed su-
perior efficacy in treating acute pharyngitis and/or laryngitis, 
proposing its potential use as adjuvant treatment for an-
ti-inflammatory or anti-infective drugs[45,46]. The detec-
tion of this biosynthesis gene cluster within the genome 
of MUSC 93JT reflects the bioactive potential of 
mangrove-derived actinobacteria (including rare actino-
mycetes and streptomycetes and further highlighting the 
possible development of this strain as “mini-factories” for 
the production of protective molecule like ectoine[47–49]. 
With the emerging role of probiotics in regulating human 
diseases caused by gut dysbiosis (i.e. imbalance in gut 
microbial population), ectoine as a osmoprotectant could 
potentially increase the viability of probiotics in food 
and prolong its shelf life[50–60]. With the availability of the 
whole genome sequence of MUSC 93JT, these data would 
greatly accelerate the medium optimization process and 
allow genomic manipulations to maximize the production 
of bioactive compounds including ectoine. 
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