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Abstract: Over the past few years, mangrove-derived Bacillus sp. have been characterized frequently for their bioactive 
potential. Bacillus sp. MUM 116 was isolated from mangrove forest in Kuala Selangor which is located on the west coast of 
Peninsular Malaysia. In order to obtain better understanding of the strain, the genome sequence of MUM 116 was acquired 
through Illumina MiSeq sequencing platform and yielded 5,720,395 bp along with 165 tRNA and 25 rRNA genes. Based on 
antiSMASH and RAST annotation, there was one cluster associated with production of bacteriocin. A deeper analysis into the 
genome sequence of MUM 116 would be essential to exploit the strain for production of bioactive compounds, which could 
potentially be developed as potent antibacterial agent. 
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Short Introduction

As a unique ecosystem, the mangrove forest are habitat for 
many plants as well as microbial populations that highly 
capable of adapting to fluctuations in temperatures, organ-
ic matter content, salinities and oxygen conditions[1,2]. Ow-
ing to these factors, some strains came up with adaptation 
strategies to survive and persist in the environment; one of 
which is by modifying metabolic pathway by scavenging 
nutrients available in the environment before converting 
them into useful, bioactive compounds that improve their 
survivability (i.e. antibacterials and antifungal)[3–5]. With 
reference to mangrove forest, Asia represents an ideal 
“hunting zone” for bioactive microbial strains as this con-
tinent has got the largest coverage of mangrove forests, 
contributing 42 % of the global total[6,7]. 

Several studies have shown that Bacillus sp. derived from 
mangrove forest have great potential in producing bioac-

tive compounds[8–13]. Bacillus sp. MUM 116 was iso-
lated from the west coast of Peninsular Malaysia during 
a screening program for bioactive microbes[14–19]. 16S 
rRNA analysis showed that MUM116 showed high sim-
ilarities (<90%) to some bioactive type strains includ-
ing Bacillus ginsengisoli, Bacillus niacini and Bacillus 
mesonae[20]. Given that mangrove-derived Bacillus sp. 
have been demonstrated to possess potential bioactive 
potential and MUM 116 displayed high 16S rRNA gene 
similarities with bioactive type strains, the strain was 
subjected to genome sequencing to uncover its genomic 
potential. 

Data description

The genomic DNA of MUM 116 was extracted using 
MasterpureTM DNA purification kit (Epicentre, Illumina 
Inc., Madison, WI, USA) before subjected to RNase 
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(Qiagen, USA) treatment[21,22]. Genomic DNA qual-
ity was evaluated using NanoDrop spectrophotometer 
(Thermo Scientific, Waltham, MA, USA) and a Qubit 
version 2.0 fluorometer (Life Technologies, Carlsbad, 
CA, USA)[23,24]. Nextera™ DNA Sample Preparation kit 
(Nextera, USA) was used to generate DNA library and 
its quality was examined with Bioanalyzer 2100 high 
sensitivity DNA kit (Agilent Technologies, Palo Alto, 
CA) prior to sequencing[25,26]. Whole genome sequence 
of MUM 116 was obtained via paired-end sequencing on 
Illumina MiSeq platform with MiSeq Reagent Kit 2 (2 × 
250 bp; Illumina Inc., Madison, WI, USA)[27]. The assem-
bly of trimmed seqeuence was done with CLC Genomic 
Workbench version 5.1 (CLC Bio, Denmark), resulting 
in 208 contigs and an N50 contig size of approximately 
52,003 bp. The assembled genome size of MUM 116 
consists 5,720,395 bp, with an average coverage of 74.0-
fold and G + C content of 38.4%. The genome sequence 
of Bacillus sp. MUM 116 has been deposited at DDBJ/
EMBL/GenBank under accession of MLYR00000000. 

Table 1. General genomic features of Bacillus sp. strain MUM 116.

Genome size (bp) 5,720,395
Contigs 208
Contigs N50 (bp) 52,003
G + C content % 38.4
Protein coding genes 5,273
tRNA 165
rRNA 25

Annotation of MUM 116 genome was carried out using 
Rapid Annotation using Subsystem Technology (RAST)
[28] while gene prediction was performed using Prodigal 
version 2.6. The detection of ribosomal RNA (rRNA) 
and transfer RNA (tRNA) was done using RNAmmer 
and tRNAscan SE version 1.21, respectively[29–31]. Based 
on RAST analysis, more than one-quarter of the protein-
coding genes were associated with primary metabolism 
and highest number of genes were related with metabo-
lism of amino acid and derivatives (12%). Furthermore, 
both RAST and another bioinformatics tools, antibiotics 

& Secondary Metabolite Analysis SHell (antiSMASH) 
revealed potential of MUM 116 in producing bacteriocin 
under the thiazole/oxazole-modified microcins (TOM-
Ms) class[32,33]. Several Bacillus sp. have been described 
to have the potential of synthesizing TOMMs[34,35]. For 
instance, Bacillus amyloliquefaciens FZB42 isolated 
from plant-pathogen-infested soil was capable of com-
pounds producing not just plant-promoting activity, the 
strain produced a novel TOMMs — plantazolicin which can 
suppress growth of bacterial and fungal plant pathogens[35]. 
Even though Bacillus sp. isolated from terrestrial region 
showed great potential in producing bioactive 
compounds, several studies have hinted that genomes 
of Bacillus sp. from special environment like mangrove 
area are generally more “enriched” than those from ter-
restrial area, as the dynamic environment imposes selec-
tive pressure on genomic region associated with adapta-
tion which then promotes production of unique secondary 
metabolites[36,37]. Altogether, the availability of MUM 
116 genome sequences enabled further investigation into 
its genomic potential, particularly for the production of 
bacteriocin(s). In future work, more experimental testing 
is required to optimize production medium and culture 
conditions for Bacillus sp. before exhaustively examine 
all potential antimicrobials.
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