

Frogress in Microbes and Molecular Biology

Supplementary materials

Database	Search String
Scopus	(Plant* OR Natural product* OR Natural compound* OR Organic product* OR Phytochemical* OR Plants-derived compound* OR Plant secondary compound* OR Plant secondary metabolites OR Medicinal plant* OR Medicinal herb* OR Herb* OR Therapeutic plant* OR botanical drug OR traditional medicine OR Plant extract* OR Herbal extract* OR polyphenol* OR phenolic compound* OR flavonoid* OR Terpenoid*) AND (Autophagy OR Autophagic OR cell degradation OR lysosomal degradation OR mitophagy OR cell turnover OR Autophag*) AND (neuro* OR neuron* OR neurological OR neurodegenerat* OR neuroprotect* OR neurogenesis OR neuroscience OR astrocyte* OR microglial* OR hippocampal* OR neuroblastoma)
PubMed	("Plant*" OR "Natural product*" OR "Natural compound*" OR "Organic product*" OR "Phytochemical*" OR "Plants-derived compound*" OR "Plant secondary compound*" OR "Plant secondary metabolites" OR "Medicinal plant*" OR "Medicinal herb*" OR "Herb*" OR "Therapeutic plant*" OR "botanical drug" OR "traditional medicine" OR "Plant extract*" OR "Herbal extract*" OR "polyphenol*" OR "phenolic compound*" OR "flavonoid*" OR "Terpenoid*") AND ("Autophagy" OR "Autophagic" OR "cell degradation" OR "lysosomal degradation" OR "mitophagy" OR "cell turnover" OR "Autophag*") AND ("neuro*" OR "neuron*" OR "neurological" OR "neurodegenerat*" OR "neuroprotect*" OR "neurogenesis" OR "neuroscience" OR "astrocyte*" OR "microglial*" OR "hippocampal*" OR "neuroblastoma")
Google Scholar	Allintitle: (Plant* OR Natural product* OR Natural compound* OR Organic product* OR Phytochemical* OR Plants-derived compound* OR Plant secondary compound* OR Plant secondary metabolites OR Medicinal plant* OR Medicinal herb* OR Herb* OR Therapeutic plant* OR botanical drug OR traditional medicine OR Plant extract* OR Herbal extract* OR polyphenol* OR phenolic compound* OR flavonoid* OR Terpenoid*) AND (Autophagy OR Autophagic OR cell degradation OR lysosomal degradation OR mitophagy OR cell turnover OR Autophag*) AND (neuro* OR neuron* OR neurological OR neurodegenerat* OR neuroprotect* OR neurogenesis OR neuroscience OR astrocyte* OR microglial* OR hippocampal* OR neuroblastoma)

Table S1. Search term table for Scopus, PubMed, and Google Scholar

Explanation:

- Scopus: The search string uses wildcards (*) and Boolean operators (AND, OR) to capture a wide range of relevant literature. The search string is designed to be comprehensive, accounting for variations in terminology across different studies.
- **PubMed**: PubMed's search string is similar to Scopus, but formatted for the specifics of PubMed syntax, including quotation marks around phrases.
- **Google Scholar**: The Allintitle: operator is used in Google Scholar to focus on articles where the key terms appear in the title, which typically increases relevance. The rest of the search string follows the same logic as the others, with wildcards and Boolean operators.

Filters	
Text availability	Limited to free full text and full text
Date of range	Period of the inception of databases until February 28, 2024
Author name	No limitation
Subject Area	No limitation
Document type	Limited to original article and book chapter
Source title	No limitation
Publication stage	No limitation
Keyword	No limitation
Affiliation	No limitation
Funding sponsor	No limitation
Country	No limitation
Source type	No limitation
Language	Limited to English
Open access	No limitation

Table S2. Search Term Filters for Scopus, PubMed, and Google Scholar

Table S3. PRISMA Checklist.

Section and	Item		Location
Topic	#	Checklist item	where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	Line 1, Line 11-13
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Line 7 - 32
INTRODUCTION	ſ		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Line 35 - 61
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Line 62 - 74
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. . Data sources and search strategy Inclusion and exclusion criteria Quality assessment	Line 86 – 102, supplementary note Table S1, S2
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Line 77 – 84
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Supplementary note S1 and S2
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Line 114-122
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Line 86-86
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Line 113 - 125
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Not applicable
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation	Not applicable

Molecular Biology

Progress in Microbes and

Section and Topic	ltem #	Checklist item	Location where item is reported
		tools used in the process.	
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Not applicable
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Not applicable
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Not applicable
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Not applicable
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Not applicable
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Not applicable
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Not applicable
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Not applicable
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Not applicable
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure 1
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Figure 1
Study characteristics	17	Cite each included study and present its characteristics.	Table 1 & 2
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Not applicable
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	Table 1 & 2
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	Results

Section and Topic	ltem #	Checklist item	Location where item is reported
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Not applicable
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	Not applicable
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	Not applicable
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	Not applicable
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Not applicable
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Line 153 – 584
	23b	Discuss any limitations of the evidence included in the review.	Line 585 – 612, Table 3
	23c	Discuss any limitations of the review processes used.	Not applicable
	23d	Discuss implications of the results for practice, policy, and future research.	Line 613 – 661, Table 4
OTHER INFORMA	TION		
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Not applicable
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Not applicable
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	Not applicable
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Line 690-691
Competing interests	26	Declare any competing interests of review authors.	Line 693
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Line 681-684

		Plant	crude extract studies		
Plant name, common & scientific name, part (root/flower/leave, etc. used), country	method (solvents used)	Chemical compounds/ Chemical composition/ Bioactive compounds identified	Human disease (Cell lines/ animal models)	Results	Reference
Acorus tatarinowii			Alzheimer's disease (<i>C. elegans</i>)	Neuroprotective activities: $\downarrow A\beta$ -induced paralysis in CL4176 transgenic <i>C. elegans</i> \uparrow Olfactory learning and serotonin sensitivity in CL4176 $A\beta$ transgenic <i>C. elegans</i> $\downarrow A\beta$ and polyglutamine deposition in the muscle tissue in CL4176 A β transgenic and AM140 <i>C. elegans</i> \downarrow Intracellular ROS in CL4176 A β transgenic <i>C. elegans</i> Autophagic enhancement: $\uparrow Bwc-1, vps-34, unc-51, lgg-1$, and $lgg-2$ autophagic- related gene expressions \downarrow P62 protein expression level	[1]
Andrographis paniculata, China		neoandrographolide and	Neurotoxicity study: Aluminium (male ICR mice and PC-12 cells)	Neuroprotective activities: ↑ Cognitive and memory function of aluminium chloride- treated mice ↓ Oxidative stress levels in aluminium chloride-treated mice ↓ Tau phosphorylation in aluminium chloride-treated mice ↑ Viability of Al(mal) ₃ treated PC12 cells Autophagic enhancement: ↑ LC3B-II and p62 protein expressions in both <i>in vitro</i> and <i>in vivo</i> experiments ↑ Number of autophagosomes in Al(mal) ₃ treated PC12 cells	[2]

<i>Angelica polymorpha</i> Maxim (root), Korea	1 kg of grounded root was boiled in 2 L of 80% ethanol for 2 h. Ethanol was added to remove polysaccharides, then	N/A	Neuroblastoma (humar SH-SY5Y neuroblastoma cells)	Antiproliferative activities: ↑ Cell viability, ↓ Akt, GSK-3β and MAPKs activation, ↑ number of apoptotic cells, ↑ MMP depolarization, ↑ BAX proapoptotic marker, ↓ Bcl-2 and Mcl-1 anti-apoptotic markers, and ↑ Caspase-3 activation	[3]
	evaporated and filtered.			No autophagic activation: No significances in autophagic vacuoles and LC3 proteins expression level	
<i>Apios americana</i> Medik, China	Water extract was prepared by ultrasonicating 100 g of flower powder with 4 L of deionized water at 50°C	apigenin, and	Neuropathology: oxidative stress (PC-12 cells)	Neuroprotective activities: 2↓ Cytotoxicity and DNA damage in H ₂ O ₂ -treated PC12 cells ↓ Cellular ROS and ↑ mitochondrial function in H ₂ O ₂ - treated PC12 cells ↓ Bax, caspase-3 and Nrf2 pro-apoptotic proteins while ↓ Bcl-2 anti-apoptotic protein expressions in H ₂ O ₂ -treated PC12 cells Autophagic enhancement: ↑ Atg4, atg5, Rab5, SIRT1, and FoxO1 autophagy proteins expressions in H ₂ O ₂ -treated PC12 cells	[4]
Apocynum venetum (leaves), China	Provided by Department of Integrative Medicine of Zhongshan Hospital, Shanghai, China.	N/A	Neuropathology: oxidative stress (PC-12 cells)	Neuroprotective activities: 2 ↑ Viability of H ₂ O ₂ treated PC12 cells ↓ BAX and activated caspase-3 pro-apoptotic protein levels Autophagic enhancement: ↑ LC3-II autophagic marker ↓ SQSTM1/p62 protein expression	[5] S
<i>Arctium lappa</i> L. (roots), China	Extract was prepared using ethyl acetate with own research group protocol	4,5- <i>O</i> -dicaffeoyl-1- <i>O</i> - [4-malic acid methyl ester]-quinic acid	Cerebral Ischemia (male Sprague Dawley rats and SH-SY5Y cells)	Neuroprotective activities:	[6] S

		isoquercitrin (6.369%), isotrifoliin (5.7853%), spiraeoside (5.3827%), tricin 5-O-hexoside, petunidin 3-O- rutinoside, myricitrin, isomucronulatol-7-O- glucoside, tricin, hyperoside, narcissoside, phloretin, and methylnaringenin c-pentoside			
Green tea polyphenols, <i>Camellia sinensis</i> , China	N/A	Epigallocatechin-3- gallate and other catechins	Diabetic neuropathy (male Sprague Dawley rats and PC12 cells)	Neuroprotective activities: ↑ Hippocampal senescence, islet structures, and glucolipid metabolism in type-2 diabetic mellitus rats ↑ Spatial memory and ↓ hippocampal injury and apoptosis in T2DM rats ↓ Endoplasmic reticulum stress marker levels Autophagic enhancement: ↑ Number of autophagosomes and autophagosome- lysosome formation in the hippocampus of T2DM rats ↑ PINK and LC3-II/I protein expressions in the hippocampus of T2DM rats and PC12 diabetic cell model ↓ p62 and activated-mTOR protein expressions in the hippocampus of T2DM rats and PC12 diabetic cell model	[10]
<i>Celosia argentea</i> L. (seeds), China	Ethanol extract was prepared by macerating the seed powder in 50% ethanol, and separated using resin HPD100 column chromatography	N/A	Pathophysiology: Oxidative stress (NSC- 34 cell lines)	Neuroprotective activities: ↑ Viability of BHP-treated NSC34 cells ↓ Intracellular ROS level in BHP-treated NSC34 cells ↓ Number of apoptotic cells in BHP-treated NSC34 cells ↓ Activated caspase-3, and -7, and cytochrome C expression level ↑ SOD1 antioxidant enzymatic activity Autophagic enhancement: ↑ Beclin-1 autophagic marker	[11]

Chaenomeles sinesis Aqueous extract was N/A PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463 , China prepared and applied in this study Coptis chinesis Aqueous extract was Berberine (2.66 (rhizome), Taiwan provided by Sun-Ten Palmatine (0.78 Pharmaceutical Co., Cotpisine (0.729 LDT. Purchased from Aktin N/A Cynanchum otophyllum Chemicals Inc. Chengdu, China. The Schneid (rhizome), China rhizome was pulverised and 1 kg of

the powder was reflux in 95% ethanol and subsequently extracted in chloroform. The fraction was further dissolved in methanol and 5% hydrochloric acid at 90°C for 30 min. The mixture was neutralized with

 γ(a), and (human Flp-In 293 γ(b), and (human Flp-In 293 γ(b) cells SH-SY5Y neuroblastoma cell) γ(cell viability and neurite outgrowth of A53T α-Syn-GFP transgenic SH-SY5Y cells Autophagic enhancement: γ(cell viability and LC3-positive autophagic vacuoles in Flp-In 293 cells γ(cell viability and provide the autophagic vacuoles in Flp-In 293 cells γ(cell viability and provide the autophagic vacuoles in Flp-In 293 cells γ(cell viability and provide the autophagy marker protein expression in Flp-In 293 cells γ(clarance of α-synuclein in A53T α-Syn-GFP transgenic SH-SY5Y cells 	[12]
Autophagic suppression: \downarrow LC3B and p62 protein expressions in the muscles ALS mice \downarrow activated-mTOR and SMAD2 in the muscles ALS mice \downarrow activated-mTOR and SMAD2 in the muscles ALS mice \downarrow activated-mTOR and SMAD2 in the muscles ALS mice \downarrow activated-mTOR and SMAD2 in the muscles ALS mice Neuroprotective activities:[1]%), and (human Flp-In 293 cells SH-SY5Y neuroblastoma cell) \uparrow β -glucocerebrosidase (GBA) protein expression in Flp-In 293 cells Autophagic enhancement: \uparrow Number of stained LC3-positive autophagic vacuoles in Flp-In 293 cells \uparrow LC3-II/I autophagy marker protein expression in Flp-In 293 cells \uparrow Clearance of α -synuclein in A53T α -Syn-GFP transgenic SH-SY5Y cells Alzheimer's disease (Triple transgenic AD mice and HT22 mouse hippocampal cell) $ A\beta$ and Tau proteins aggregation in transgenic human AD mice brain Autophagic enhancement: $ AD$ mice brain Autophagic enhancement: $ C3-II, LAMP1, TFEB, PPAR\alpha$ and mature CTSD autophagy proteins expression in transfected P301L-GFP	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
%),Parkinson's diseaseNeuroprotective activities:[1]%), and (human Flp-In 293↑ β-glucocerebrosidase (GBA) protein expression in Flp-In 293 cells293 cells%)cells SH-SY5Y1023 cellsneuroblastoma cell)↑ Cell viability and neurite outgrowth of A53T α-Syn-GFP transgenic SH-SY5Y cellsAutophagic enhancement: ↑ Number of stained LC3-positive autophagic vacuoles in Flp-In 293 cells ↑ LC3-II/I autophagy marker protein expression in Flp-In 293 cells ↑ Clearance of α-synuclein in A53T α-Syn-GFP transgenic SH-SY5Y cellsAlzheimer's disease (Triple transgenic AD hippocampal cell)↓ Aβ and Tau proteins aggregation in transgenic human AUtophagic enhancement: ↓ Microglial and astrocyte activated neuroinflammation in AD mice brain Autophagic enhancement: ↓ LC3-II, LAMP1, TFEB, PPARα and mature CTSD autophagy proteins expression in transfected P301L-GFP	
%)cells SH-SY5Y neuroblastoma cell)293 cells \uparrow Cell viability and neurite outgrowth of A53T α -Syn-GFP transgenic SH-SY5Y cells Autophagic enhancement: \uparrow Number of stained LC3-positive autophagic vacuoles in Flp-In 293 cells \uparrow LC3-II/I autophagy marker protein expression in Flp-In 293 cells \uparrow Clearance of α -synuclein in A53T α -Syn-GFP transgenic SH-SY5Y cellsAlzheimer's disease (Triple transgenic AD mice and HT22 mouse hippocampal cell) \downarrow A β and Tau proteins aggregation in transgenic human APP expression 7PA2 cell and AD mice brain \downarrow Microglial and astrocyte activated neuroinflammation in AD mice brain Autophagic enhancement: \uparrow LC3-II, LAMP1, TFEB, PPAR α and mature CTSD autophagy proteins expression in transfected P301L-GFP	[13]
neuroblastoma cell) \uparrow Cell viability and neurite outgrowth of A53T α -Syn-GFP transgenic SH-SY5Y cells Autophagic enhancement: \uparrow Number of stained LC3-positive autophagic vacuoles in Flp-In 293 cells \uparrow LC3-II/I autophagy marker protein expression in Flp-In 293 cells \uparrow Clearance of α -synuclein in A53T α -Syn-GFP transgenic SH-SY5Y cellsAlzheimer's disease (Triple transgenic AD hippocampal cell)Neuroprotective activities: \downarrow A β and Tau proteins aggregation in transgenic human APP expression 7PA2 cell and AD mice brain \downarrow Microglial and astrocyte activated neuroinflammation in AD mice brain Autophagic enhancement: \uparrow LC3-II, LAMP1, TFEB, PPAR α and mature CTSD autophagy proteins expression in transfected P301L-GFP	
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	
$ \begin{array}{l} \uparrow LC3-II/I \mbox{ autophagy marker protein expression in Flp-In 293 cells} \\ \uparrow Clearance of α-synuclein in A53T α-Syn-GFP transgenic SH-SY5Y cells} \\ Alzheimer's disease (Triple transgenic AD $\downarrow A$\beta$ and Tau proteins aggregation in transgenic human mice and HT22 mouse hippocampal cell) $\downarrow A$\beta$ and Tau proteins aggregation in transgenic human APP expression 7PA2 cell and AD mice brain \downarrow Microglial and astrocyte activated neuroinflammation in AD mice brain \downarrow LC3-II, LAMP1, TFEB, PPARα and mature CTSD autophagy proteins expression in transfected P301L-GFP $ \end{tabular} $	
SH-SY5Y cellsII-Alzheimer's diseaseNeuroprotective activities:II-(Triple transgenic AD $\downarrow A\beta$ and Tau proteins aggregation in transgenic humanAPP expression 7PA2 cell and AD mice brainhippocampal cell) \downarrow Microglial and astrocyte activated neuroinflammation in AD mice brainAD mice brainAutophagic enhancement: \uparrow LC3-II, LAMP1, TFEB, PPAR α and mature CTSD autophagy proteins expression in transfected P301L-GFP	
Alzheinier's diseaseRecursprotective activities.(Triple transgenic AD mice and HT22 mouse hippocampal cell) \downarrow A β and Tau proteins aggregation in transgenic human APP expression 7PA2 cell and AD mice brain \downarrow Microglial and astrocyte activated neuroinflammation in AD mice brain Autophagic enhancement: \uparrow LC3-II, LAMP1, TFEB, PPAR α and mature CTSD autophagy proteins expression in transfected P301L-GFP	
mice and HT22 mouse APP expression 7PA2 cell and AD mice brain hippocampal cell) ↓ Microglial and astrocyte activated neuroinflammation in AD mice brain Autophagic enhancement: ↑ LC3-II, LAMP1, TFEB, PPARα and mature CTSD autophagy proteins expression in transfected P301L-GFP	[14]
hippocampal cell) ↓ Microglial and astrocyte activated neuroinflammation in AD mice brain Autophagic enhancement: ↑ LC3-II, LAMP1, TFEB, PPARα and mature CTSD autophagy proteins expression in transfected P301L-GFP	
AD mice brain Autophagic enhancement: ↑ LC3-II, LAMP1, TFEB, PPARα and mature CTSD autophagy proteins expression in transfected P301L-GFP	
↑ LC3-II, LAMP1, TFEB, PPARα and mature CTSD autophagy proteins expression in transfected P301L-GFP	
autophagy proteins expression in transfected P301L-GFP	

	sodium hydroxide to pH6-7, concentrated and evaporated. Lastly, the crude extract was diluted with water and extracted by chloroform again, separated and concentrated in vacuo at 40°C.				
Bergamot, <i>Citrus</i> bergamia	Essential oil, provided by CAPUA s.r.l., Reggio Calabria, Italy	Limonene, linalyl acetate, γ -terpinen, β - bisabolene, terpinolene, neryl acetate, α -pinene, sabinene,myrene, β - bisabolene, terpinolene, neryl acetate, α -thujene geranyl acetate, β - caryophyllene, trans- α - bergamotene, geranial, phellandrene, neral, ρ - cimene, decanal, camphene, o-cimene	neurological diseases (human SH-SY5Y neuroblastoma cell)	Antiproliferative effects: ↑ Cell death in both apoptosis and necrosis Autophagic enhancement: ↑ LC3-II/I ratio and p62, and ↓ Beclin-1 autophagic markers by both Bergamot essential oil and Limonene pure compound.	[15]
Wampi, <i>Clausena</i> <i>lansium</i> (Lour.) Skeels. (fruit peels)	Aqueous extract was prepared by dissolving grinded fruit peels in Milli-Q water in ratio of 1:5, under boiling condition for 1h	N/A	Neuroblastoma (SH- SY5Y cells)	 Antiproliferative activities: ↓ Viability in SH-SY5Y cells ↑ DNA damage in SH-SY5Y cells ↑ Oxidative stress in SH-SY5Y cells ↑ BAX and activated caspase-3 pro-apoptotic proteins and ↓ Bcl-2 anti-apoptotic protein Autophagic enhancement: ↑ Beclin-1, Atg4B, and LC3-II/I ratio autophagic markers 	[16]
<i>Clitoria ternatea</i> Linn. (whole plant), India	Whole plant and jaggery were combined (1:1) to	Pyrogallal (1.93%), Kaempferol 3- neohesperioside	Brain ageing (Male albino Wistar rats)	Neuroprotective activities: ↑ Spatial learning and memory of stereotaxic mediated kainite stress rats	[17]

	form Medhya rasayana, they were grinded into fines, then they were mixed with animal feed in (1:1) ratio	(0.91%), Quercetin 3 neohesperioside (0.69%), Clitorin (0.38%), Kaempferol (0.3%), and Kaempferiol 3- glucoside (0.16%)		 ↑ Catalase, SOD, and GSH antioxidant enzymatic activitie Autophagic activities: ↓ Brain autophagic level in stereotaxic mediated kainite stress rats ↓ Numbers of autophagosomes in rats' brain tissue 	es
Ground green and medium-roasted coffee beans, <i>Coffea</i> <i>arabica</i> Burundi, Belgium	Obtained from Beyers Koffee, Belgium.		Alzheimer's disease (human SH-SY5Y neuroblastoma)	Neuroprotective activities: \uparrow Viability of A β_{1-42} , hydrogen peroxide, and rotenone- treated SH-SY5Y cells Autophagic enhancement: \uparrow LC3-II, Beclin-1 and lamp2A autophagic markers in mRNA levels	[18]
Hawthorn, <i>Crataegus</i> <i>pinnatifida</i> (leaves), China	Provided by Shanxi Kanglisheng Pharmaceutical Co., Ltd., China.	Flavonoids	Spinal cord injury (Sprague Dawley rats)	Neuroprotective activities: ↑ Motoneuron function and ↓ neuronal injury in SCI rats ↓ Cell apoptosis in SCI rats ↑ Axonal regeneration of injured spinal motor neuron Autophagic enhancement: ↑ Number of autophagosomes in spinal cord tissue ↑ LC3-II/I, Beclin-1 and ↓ p62 and SCG10 protein expression in spinal cord tissue	[19]
Tumeric <i>Curcuma</i> longa, Thailand	Cordyceps was provided by Laboratory of Cell- Based Assays and Innovations, Suranaree University of Technology, turmeric extract was purchased from SAND-M Global Co., Ltd., and encapsulated with cordyceps		Alzheimer's disease (human SH-SY5Y cells)	Neuroprotective activities: ↑ Neuronal maturation and dopamine secretion in SH- SY5Y cells ↓ Expressions of AD-related genes in SH-SY5Y cells Autophagic enhancement: ↑ SIRT1 and LC3 protein expressions in SH-SY5Y cells ↑ Autophagic vacuoles in SH-SY5Y cells	[20]

PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463

[21]

Dendrobium nobile Extracted using Lindl (stems), China boiling in 95% e Dendrobine (92.6%),

PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463

boiling in 95% ethan	oldendrobine-N-oxide	(rat primary	\downarrow Axonal degeneration in A β_{23-25} treated cell	
	(3.3%), nobilonine	hippocampal cells)	Autophagic enhancement:	
	(2.0%), and 6-hydroxy-	· · · · ·	↑ Autophagosome formation and autophagosome-lysosome	
	nobilonine (0.32%)		fusion	
			↑ LC3-II/I ratio, Beclin-1 and Atg5 autophagic markers	
		Alzheimer's disease	Neuroprotective activities:	[22]
		(male SAMP8 mice)	↑ Cognitive and memory functions in mice	
			↑ Morphologically improvement in cortex and	
			hippocampus	
			\downarrow A β deposition in the cortex and hippocampus	
			\uparrow IDE and NEP Aβ degrading enzyme activities	
			Autophagic enhancement:	
			↑ LC3and Beclin-1 autophagic markers and ↓ p62 protein	
			expression	
		Neurotoxicity: D-	Neuroprotective activities:	[23]
		galactose (primary	↑ Viability of D-galactose treated primary hippocampal	
		hippocampal neurons)	neurons	
			↓ Cell senescence biomarkers in primary hippocampal	
			neurons	
			Autophagic enhancement:	
			\uparrow LC3-II/I and Beclin-1, \downarrow p62 protein expression	
			↑ Sirt-1 and FoxO1 protein expressions	F0 (7)
Purchased from		Neurotoxicity:	real oprotective activities.	[24]
Xintian Traditional		Manganese chloride	\uparrow Cell viability of MnCl ₂ -treated PC12 cells	
Chinese Medicine		(PC-12 cells)	↓ Cellura ROS production while ↑ mitochondrial	
Industry Co., LTD of			respiration level in MnCl ₂ -treated PC12 cells	
Guizhou Province			\downarrow Apoptotic cells number, \downarrow Bax pro-apoptotic protein and	
			↑ Bcl-2 anti-apoptotic protein expressions in MnCl ₂ -treated	
			PC12 cells	
			Autophagic enhancement:	
			\downarrow LC3-II while \uparrow p62 autophagy proteins expressions for	
			autophagosome degradation in MnCl ₂ -treated PC12 cells	
			↑ PINK1 and Parkin mitophagy proteins expressions in	
			MnCl ₂ -treated PC12 cells	

Alzheimer's disease Neuroprotective activities:

<i>Eucommia ulmoide</i> Oliver (leaves), China	s Aqueous extract was prepared using 50g of leaves powder dissolving in 5 L of ultrapure water under heat reflux, followed by precipitation and freeze-drying process	acid, neochlorogenic acid, chlorogenic acid, and cryptochlorogenic acid	Parkinson's disease (Zebrafish embryos)	 Neuroprotective activities: ↑ Viability of dopaminergic neurons in the brain of MPTP-treated zebrafish ↓ Number of apoptotic cells in the brain of MPTP-treated zebrafish ↑ Locomotor functions in MPTP induced PD zebrafish ↑ α-synuclein clearance Autophagic enhancement: ↑ <i>Pink1</i> and <i>parkin</i> mitophagy marker transcript levels ↑ <i>Beclin-1 ulk1, ulk1b</i> and <i>ambra1a</i> autophagic marker transcript levels 	[25]
<i>Euterpe oleracea</i> and <i>Euterpe</i> <i>precatoria</i> (pulp), United States	Solubilization of 100 mg whole fruit in 10 mL deionized (water)	Cyanidin-glucoside, cyanidin-rutinoside, delphinidin-glucoside, malvidin-glucoside, peonidin-glucoside, catechin. ferulic acid, quercetin, resveratrol, vanillic acid, and synergic acid	Neuropathology: oxidative stress (mouse hippocampal HT22 cells and primary rat hippocampal cells)		[26]
Folium <i>Hibisci</i> <i>mutabilis</i> (leaves), China	Ethanol extract was prepared by soaking leaves powder in 75% ethanol, followed by vacuum evaporation	N/A		 γ:Neuroprotective activities: ∴ ↓ AD, PD, and HD pathology in <i>C. elegans</i> models ↑ Lifespans and stress resistance in normal N2 worms ↑ Viability of and ↓ clearance of AD-related proteins in Aβ treated PC-12 cells ↑ Cognitive and memory functions in AD mice Autophagic enhancement: ↑ GFP-LGG1 puncta in DA2123 worms ↓ p62/SQST-1-GFP puncta in BC12921 worms ↑ <i>unc-51 and vps-34</i> mRNA expression in normal N2 worms ↑ GFP-LC3 puncta, LC3-II/I ratio while ↓ p62 in GFP-RFP-LC3 U87 and PC-12 cells 	[27]

Gardenia jasminoides, Korea	Provided by Hanpoong Pharmaceutical Co., Jeonju, Korea.	N/A	Brain Tumour (U87MG and U373MC cells, and normal astrocyte cells)	 ↑ LC3B and ↓ p62 protein expression in the brain of AD mice Anti-proliferative activities: G↓ Viability of both human glioblastoma cell lines ↑ Activated caspase-3, -9, and PARP pro-apoptotic proteine ↑ Synergistical anti-proliferative effects on glioblastoma cells when combine with cisplatin ↑ p53, and ↓ activation of Akt and p70S6K protein expressions 	[28] S
<i>Ginkgo biloba</i> 761, Germany	N/A, extracted using 60% (acetone)	Ginkgo flavone glycosides, terpene lactones, ginkgolides A B and C, bilobalide, and ginkgolic acids	Alzheimer's disease (TgCRND8 APP- , transgenic AD mice)	Autophagic enhacemenet: \uparrow LC3-II autophagic marker and \downarrow p62 protein expression Neuroprotective activities: \uparrow Cognitive function, PSD-95, Munc18-1, and SNAP25 synaptic structure proteins level, BDNF level, \downarrow Iba-1- positive inflammatory cells and \downarrow TNF- α and CCL-2 pro- inflammatory cytokines in TgCRND8 APP-transgenic AD mice. Autophagic enhancement:	[29]
	Provided by Dr Willmar Schwabe Pharmaceuticals, and extracted using 60% acetone	N/A	Alzheimer's disease (Human SH-SY5Y neuroblastoma and P301S tau mutant- transgenic mice)	 ↑ LC3-II, beclin-1 autophagic marker, and p62 autophagic markers, ↓ NLRP3 inflammasome level by autophagy in TgCRND8 APP-transgenic AD mice and primary microglial cells from C57BL/6 mice. Neuroprotective activities: ↑ Cognitive and synaptic functions in tau mutant-transgenimice ↓ Deposit of phosphorylated tau level in the brain of transgenic mice ↓ Number of Iba-1 and S100 stained inflammatory microglial cells from hippocampus of transgenic mice ↓ il-1β pro-inflammatory, while ↑ arg1 and mcr1 anti- 	[30]
				inflammatory transcriptional genes from hippocampus of transgenic mice Autophagic enhancement: ↑ LC3-II autophagic marker in the brain of transgenic mice and normal SH-SY5Y cells	e

PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463

					 ↑ Number of autophagosomes and autolysosomes in SH- SY5Y cells ↑ Atg5 and Beclin-1 autophagic markers in SH-SY5Y cells 	5
		Provided by Zhonghao International Co. Ltd., China)		Cerebral Ischemia (male Spraque Dawley rats)	Neuroprotective activities: ↓ Neurological deficit and infarct volume the brain of post MCAO rats ↑ Viability of penumbral neuron of post MCAO rats Autophagic enhancement: ↑ LC3-II/I and Beclin-1 protein expressions in penumbra of post MCAO rats ↓ CTSB and CTSD lysosomal proteins in penumbra of post MCAO rats ↑ SQSTM1 protein expressions in penumbra of post MCAO rats	f
- 0000	Ginkgo biloba EGB1212		Flavonoids, terpene lactones (ginkgolides A B, C and bilobalide), and ginkgolic acids	Cerebral Ischemia ,(Sprague-Dawley rats)	Neuroprotective activities:	[32]
	Graptopetalum paraguayense (leaves), China	Ethanol extract was prepared by dissolving 15 g lyophilized powder into 100 ml of pure ethanol and fractionized using size exclusion column		Alzheimer's disease (APPswe/PS1dE9 double transgenic mice, and SH-SY5Y cells, <i>C. elegans</i>)	Neuroprotective activities: $\downarrow A\beta$ production in APP695 transgenic SH-SY5Y cells \downarrow Plaque formation in the brain of transgenic mice \uparrow AMPK activation in the brain of transgenic mice Autophagic enhancement: \uparrow LC3-II/I ratio autophagic marker and \downarrow p62 protein expression in APP695 transgenic SH-SY5Y cells \uparrow LGG-1/LC3 puncta in the seam cells of transgenic AD <i>C.</i> <i>elegans</i>	[33]

DIMIN 1015 0 1. 20000162 1.	<i>Herba Rhodiolae</i> , China	Purchased from Beijing Tongrentang	N/A	Depression (male Sprague Dawley rats)	Neuroprotective activities: ↓ Depressive behaviour in CUMS rats ↑ BDNF and TrkB protein expression levels in the hippocampus tissue of CUM rats ↓ Glutamate level in the hippocampus tissue of CUM rats Autophagic suppression: ↓ LC3-II/I ratio and Beclin-1 autophagy protein expressions in the hippocampus tissue of CUM rats ↓ Number of autophagosomes in the hippocampus tissue of CUM rats	[34]
	Humulus lupulus L., Italy	Extarcted using boiling water or 10% ethanaol, followed by freeze dyring		Alzheimer's disease (SH-SY5Y cells and <i>C.</i> <i>elegans</i>)	Neuroprotective activities: ↑ Viability of Aβ-treated cells ↓ Aggregation of Aβ in Aβ-treated cells ↓ Paralyzed worm in AD transgenic <i>C. elegans</i> Autophagic enhancement: ↑ Beclin-1, LC3, p62, and LAMP2A transcription and protein level ↓ Activation of Akt, ERK, and p70S6K protein expression	[35]
	Lychee, <i>Litchi</i> <i>chinensis</i> Sonn. (seeds), China	N/A	N/A		Neuroprotective activities: ↓ NLRP3 inflammatory marker in Aβ-treated BV-2 cells and mutant Aβ transgenic mice ↑ Viability of Aβ-treated PC12 cells ↑ Cognitive function in mutant Aβ transgenic mice Autophagic enhancement: ↑ LRP1 Aβ transport membrane expression level in Aβ- treated BV-2 cells and mutant Aβ transgenic mice ↑ LC3-II/I ratio and Beclin-1 autophagic markers in Aβ- treated BV-2 cells and mutant Aβ transgenic mice ↑ Activation of AMPK, while ↓ protein level in Aβ-treated BV-2 cells and mutant Aβ transgenic mice	[36]
		N/A	N/A	Alzheimer's disease (APP/PS1 double transgenic AD C57BL/6 mice and bEnd.3 muse brain	Neuroprotective activities: ↑ Cognitive function of AD mice ↑ Cell viability of Aβ (25-35)-induced bEnd.3 cells ↓ Monolayer permeability of Aβ (25-35)-induced bEnd.3 cells	[37]

			capillary endothelial	\downarrow NLRP3, caspase-1, ASC, IL-1 β and IL-18	
			cell line)	neuroinflammatory proteins in brain tissue of AD mice and A β (25-35)-induced bEnd.3 cells	
				Autophagic enhancement:	
				\uparrow LC3-II and formation of GFP-LC3 puncta in A β (25-35)-	
				induced bEnd.3 cells	
				\uparrow Activation of AMPK and \downarrow mTOR and ULK1 proteins in	
				A β (25-35)-induced bEnd.3 cells	
icera japonica	Ethanol extract was	N/A	Alzheimer's disease	Neuroprotective activities:	[38]
wers), China	prepared by using	1011	(male Kunming mice)	↑ Cognitive and memory functions in LPS-treated mice	
	95% ethanol under		(maie realining linee)	Autophagic enhancement:	
	reflux			↑ Atg5, Vps34, Beclin-1, and LC3-II autophagic marker in	
				the hippocampus of LPS-treated mice	
ium barbarum,	Purchased from	N/A	Diabetic peripheral	Neuroprotective activities:	[39]
na	Ningxia Agricultural		neuropathy (male	\downarrow Myelin and axonal injury in the sciatic nerves of diabetic	
	and Forestry College		Sprague Dawley rat)	rats	
				\downarrow Electrophysiological damage in the sciatic nerves of	
				diabetic rats	
				Autophagic enhancement:	
				\uparrow LC3-II and Beclin-1 while \downarrow p62 autophagy proteins	
				expressions	
	Deniel and frame	NT/A	Stuales (Duimerum	↓ Activation of mTOR and p70S6K proteins	[40]
	Purchased from	N/A	Stroke (Primary	Neuroprotective activities:	[]
	Beijing Solarbio Science & Technology	T	hippocampal neuron	↑ Viability and ↓ LDH release from oxygen glucose deprivation/reoxygenation-induced neuron	
	Co. Ltd, Beijing,		from C57BL/6 mice)	↓ Intracellular ROS level	
	China			↓ Caspase-3 activation and BAX/Bcl-2 ratio pro-apoptotic	
	China			marker	
				↓ Number of apoptotic cells	
				Autophagic suppression:	
				↓ LC3-II/I ratio and Beclin-1 autophagic markers, ↑p62	
				protein expression	
				↑ activation of Akt, mTOR protein expression	

Ξ

and the second second

		Aqueous extract of dried fruits was prepared sequential decolouration and delipidation in alcohol, and boiling in distilled water, lastly, followed by freeze- dried into powder, China	N/A	Retinal ganglion degeneration (female Sprague Dawley rats)	Neuroprotective activities: ↓ Degeneration of retinal ganglion cells in the nasal retinas of post-PONT rats ↑ Microglia/macrophages polarization Autophagic enhancement: ↑ CD68 marker for microglia/macrophages activation ↑ LC3-II autophagic marker	[41]
100000 1 1 1		Purchased from Yuanye Biotechnology Co. Ltd. Shanghaim China.	N/A y	Parkinson's disease (Sprague Dawley juvenile rats)	Neuroprotective activities: ↓ Behavioural and locomotor dysfunction in 2,4- dichlorophenoxyacetic acid treated PD rats ↑ Viability of neuronal cells in hippocampus ↑ Microglial activation ↓ Oxidative stress and ↑ antioxidant enzyme activities in ra sera Autophagic enhancement: ↑ LC3-II/I and Beclin-1 autophagic markers mRNA expressions	[42] t
	<i>Lycium babarum</i> , Hong Kong, China	Purchased from Hong Kong Institute of Biotechnology, Hong Kong, China	galactose, 10%	Chronic intermittent hypoxia (Male Spragu Dawley rats)	Show neuroprotective properties without alternation of eautophagic activities in brain tissue of rats Autophagic enhancement: ↑ Autophagosome activities in DA2123 C. elegans	[43]
	<i>Nicandra</i> <i>physaloides</i> (fruits), China	Fruits were extracted using 90% ethanol and partitioned with ethyl acetate	Phenolic amides	Parkinson's disease (human SH-SY5Y neuroblastoma)	Neuroprotective activities: ↑ Viability of MPP ⁺ -treated SH-SY5Y cells ↓ Number of apoptotic cells, ↑ caspase-3 activation and BAX/Bcl-2 ratio apoptotic marker Autophagic enhancement: ↑ LC3-II/I ratio and ↓ p62 autophagic markers	[44]

<i>Olea europaea</i> L. (extra virgin olive oil), Spain	Cooking oil was purchased that originated from Empeltre cultivar	N/A	sclerosis (SOD1 ^{G93A} transgenic mice)	Neuroprotective activities: ↑ Lifespan and motor function of ALS mice ↑ Muscle fiber are in ALS mice Autophagic suppression: ↓ <i>LC3</i> and <i>Beclin-1</i> autophagic gene expression levels	[4:
<i>Oxalis corniculate</i> (aerial part), Egypt	Methanol extract using 5 g of dried powdered aerial parts through maceration with pure methanol and concentrated by rotary evaporator.	Carbohydrates, glycosides, saponins, tannins, and terpenoids	Alzheimer's disease (Male Sprague-Dawley rats)		[40
Korean ginseng, <i>Panax</i> ginseng, ginsenoside SGB121	Purchased from Daedong Korean ginseng Co., Ltd	Ginsenoside Rg1, Rb1, Rc, Rb2, Rb3, and Rd)	brain damage (female C57BL/6J mice)	Neuroprotective activities: ↓ Oxidative stress and ↑ antioxidant enzymatic activities in high fat diet mice ↓ Cellular senescent and inflammatory protein markers in high fat diet mice ↓ Neuronal apopotosis and pro-apoptotic proteins in high fat diet mice Autophagic suppression: ↓ Atg12, Beclin-1, and LC3-II and ↑ p62 protein expression	[47
Guarana, <i>Paullinia</i> <i>cupana</i> (seeds), Brazil		Caffeine, theobromine, catechins, epicatechins	Huntington's diseases		[4

[45]

[46]

[47]

[48]

 $\downarrow A\beta_{1-42}$ -induced paralysis in Alzheimer's *C. elegans*

300 mg/mL

PMMB 2025, 8,				(Caenorhabditis elegans)	 ↓ ROS accumulation in CL2006 transgenic <i>C. elegans</i> ↑ Expression of antioxidant and heat shock-associated genes Autophagic enhancement: ↑ Proteosomal and lysosomal degradation activity 	
<i>PMMB</i> 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463	Palm date, <i>Phoenix</i> <i>dactylifera</i> L. (fruits), Egypt	prepared by using 100 g of blended fruits in 1		Sprague Dawley rats)	 Neuroprotective activities: ↑ Cognitive and memory functions of valproic acid-treated rats ↓ Anxiety biomarker and oxidative stress levels of valproic acid-treated rats ↑ Cerebellar and hippocampus morphologically integrity in Autism rats ↓ Pro-apoptotic markers in Autism rats Autophagic enhancement: ↑ Sirt-1 expression in the hippocampus of Autism rats ↑ LC3 expression in the cerebellar cortex of Autism rats 	
	Kaliningrad amber, <i>Pinus succinifera</i> , Russia	Ethanol extract was prepared using 50% ethanol with constant stirring at 40°C, lyophilized and further dissolved in DMSO	N/A	Alzheimer's disease (human SH-SY5Y cells)	Neuroprotective activities: ↓ Viability of Aβ-treated SH-SY5Y cells ↓ BAX/Bcl-2 ratio and activated caspase-3 pro-apoptotic markers at mRNA and protein levels ↓ Intracellular ROS level and ↑ SOD1, SOD2, and CAT antioxidant enzymatic activities at mRNA level Autophagic enhancement: ↑ LC3-II and Beclin-1 autophagic markers at mRNA and protein expression	[50]
				Parkinson's disease (human SH-SY5Y cells)	Neuroprotective activities: ↑ Viability in 6-OHDA treated cells ↓ Intracellular ROS level and pro-apoptotic proteins in 6- OHDA treated cells Autophagic enhancement: ↑ LC3-II and Beclin-1 autophagic proteins	[51]
	Piper Longum L.	Prepared by Laboratory for Chemistry of Chinese	piperlonguminine	Parkinson's disease (mouse MN9D dopaminergic neuronal	Neuroprotective activities: ↑ Motor function of rotenone-Wistar rats	[52]

	Material of Chinese Capital Medical University, Beijing ,China	neuroblastoma cell lines, C57BL/6 mouse	 ↑ Viability of rotenone-treated and mitochondrial function on both rotenone-treated cell lines ↑ Mitochondrial mPTP blockage and ↓ cytochrome C release in both cell lines and mice primary cortical cell. ↓ Caspase-3 pro-apoptotic marker in rotenone-treated mice primary cortical cells Autophagic enhancement: ↑ LC3-II/I ratio autophagic marker 	
Polygala (root),	Ethanolic extract, 20 gPolygalacic acid, of <i>Polygala tenuifolia</i> senegenin and powder followed by 1 onjisaponin B h reflux with 10 times its volume of 75% ethanol. The extract was dried and concentrated using rotary evaporator	Huntington's disease and Parkinson's disease (PC-12 and mouse embryonic fibroblast cells)	Autophagic enhancement: \uparrow LC3II/I ratio autophagic marker in PC-12 cells \uparrow LC3 puncta formation in wild type <i>Atg</i> 7 gene but not in <i>Atg</i> 7 gene-deficient mouse embryonic fibroblast \downarrow AMPK and p70s6k activation Its bioactive compounds, Onjisaponin B showed similar effect Neuroprotective activities: \uparrow Clearance of mutant proteins aggregation (Huntingtin and A53T α -synuclein) transfected in PC12 cells	[24]
	Ethanolic extract, N/A extracted in 70% ethanol using spin steaming process with rotary evaporator	Alzheimer's disease (Chinese hamster ovary CHO and human SH-SY5Y neuroblastoma cells)	Neuroprotective activities: ↓ Aβ1-40 peptides secretion level of transgenic CHO- APP/BACE1 cells Autophagic enhancement: ↑ Autophagic vacuoles and LC3II/I ratio autophagic marker in SH-SY5Y cells ↑ mTOR and p70s6k autophagic markers inhibition in SH- SY5Y cells ↑ AMPK and Raptor proteins activation in SH-SY5Y cells	[53]
	Aqueous extract was N/A prepared by immersing 1 kg of dried roots with 8 L of water under reflux	Depression (male ICR mice and Wistar rats)	Neuroprotective activities: ↑ Antidepressant effects on behavioral despair mice and CRS-induced rats ↓ Iba-1 and ↑ GFAP microglial activation markers ↓ Neuroinflammatory markers at mRNA expression Autophagic enhancement:	[54]

H

	Ethanol extracts was b, prepared by soaking the dried stem and leaves in 70% ethanol followed evaporation and freeze-drying	Gallic acid, chlorogenio acid, catechin	c Diabetic-associated Dementia (Sprague Dawley rats)	 ↑ LC3-II and Beclin-1 autophagic markers and ↓ p62 protein expression in CRS rats ↓ Activation of Akt mTOR, and ULK1 and ↑ AMPK activation Neuroprotective activities: ↑ Cognitive function in diabetic rats ↓ ROS and inflammatory level in the hippocampus of diabetic rats Autophagic enhancement: ↓ AMPK activation 	[55]
Posidonia oceanica (L.) Delile (leaves), Italy	process. Ethanol extract was prepared by immersing leaves powder in 70% ethanol, followed by hydrophobic compounds exclusion and vacuum dried.		Neuroblastoma (SH- SY5Y cells)	 ↓ LC3B-II/I and p62 protein expression Antiproliferative activities: ↓ Cancer cell migration in SH-SY5Y cells <i>via</i> ↓ gelatinase activity ↑ Cell differentiation in SH-SY5Y cells Autophagic enhancement: ↑ LC3-II autophagic marker, and ↓ p-S6 and p62 protein expressions 	[56]
Montmorency tart cherry powder, <i>Prunus cerasus</i> , United States	Provided by Cherry Marketing Institute in Freeze-dried	N/A	Aging-associated pathology (male Fischer rats)	Neuroprotective activities: ↑ Cognitive and motor function of Fischer rats ↓ GFAP, NOX-2 and COX-2 proinflammatory markers Autophagic enhancement: ↓ mTOR, p62/SQSTM ratio activation and ↑ Beclin-1 autophagic marker	[57]
Boh-Gol-Zhee, <i>Psoralea coryfolia</i> L. (seeds), China	300 g of grounded seeds were used to extract twice using distilled water under reflux	Isopsoralen	Neuropathology: Oxidative stress (rat PC-12 pheochromocytoma cells)	Neuroprotective activities: ↑ Viability of palmitate treated PC12 cells and ↓intracellular ROS level by the extract and Isopsoralen ↓ Number of apoptotic cells, ↓ BAX, activated caspase-3 and PARP apoptotic markers, and ↑ BC1-2 antiapoptotic marker by the extract and Isopsoralen Autophagic enhancement: ↑ Beclin-1 and p62 autophagic markers at both mRNA and protein level by the extract and Isopsoralen	[58]

PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463	Pomegranate, <i>Punica granatum</i> (fruit), Oman	Frozen at -40°C and grounded into fine powder to produce 4% pomegranate fruit diet		Alzheimer's disease (Tg2576 mice)
10.36877/pmmb.a0000463	Salvia sahendica (Aerial part), Iran	Maceration in (acetone) and purified Salvigenin with TLC technique		Neuropathology: oxidative stress (human SH-SY5Y neuroblastoma cells)
	Scrophularia buergeriana Miquel	Ethanol extract was prepared using dried	Angoroside C	Alzheimer's disease (male senescence-

roots with 70%

ethanol, following the

Brainon® protocol.

(human SH-SY5Y neuroblastoma cells)	↓ intracellular ROS production, ↑ GSH level, ↑ SOD activity, ↓ calpain and caspase-12 ER stress associated protein markers, ↓ AO/EB-stained apoptotic cells, and ↓ activated caspase-3 and Bax/Bcl-2 ratio apoptotic markers Autophagic enhancement: ↑ AO-stained acidic cytoplasmic vesicles, ↑ LC3-II/I ratio, Atg7 and Atg12 autophagic markers in H ₂ O ₂ treated SH- SY5Y
Alzheimer's disease (male senescence- accelerated mouse prone 8)	 Neuroprotective activities: ↑ Cognitive and memory functions of SAMP8 mice ↑ Clearance of Aβ_{1.42} and p-Tau proteins in the brain tissue of SAMP8 mice ↑ Expression of SOD-1, SOD-2, GPx-1, catalase and GR antioxidant enzymes in the brain tissue of SAMP8 mice ↓ Expression of iNOS, TNF-α, and IL-6 pro-inflammatory

Neuroprotective activities:

Autophagic enhancement:

Neuroprotective activities:

mice

↑ PSD-95, Munc18-1, SNAP25, synaptophysin, p-

 \downarrow TNF- α , IL-1 β , iNOS, CCL-2 and IL-10 neuroinflammatory markers in brain tissue

CaMKII α / CaMKII α , and pCREB/CREB synaptic structure protein levels in the brain of transgenic APP_{sw}/Tg 2576

↑ Beclin-1 and LC3-II autophagic markers in brain tissue ↑ Akt, mTOR and p70S6K activation in brain tissue

↑ SH-SY5Y cell viability against H₂O₂-induced cell death,

cytokines in the brain tissue of SAMP8 mice ↑ Bcl-2 anti-apoptotic proteins while ↓ Bax, activated caspase-3, caspase-9 and PARP pro-apoptotic proteins Autophagic enhancement: [61]

[59]

[60]

Frogress in Microbes and Molecular Biology

¢

DAMA DODE & 1. 00000462 Joi: 10 26077/0	<i>Selaginella tamariscina</i> (aerial parts), Korea	Ethanol extract was prepared by macerating 50g aerial parts into 390 ml 70% ethanol, followed by sample concentration in rotary vacuum evaporator	N/A	Neurotoxicity studies: Glutamate (HT-22 cells)	 ↑ PINK1 and Parkin mitophagy protein expressions in the brain tissue of SAMP8 mice ↑ FUNDC1 and LC3B autophagy protein expressions in the brain tissue of SAMP8 mice Neuroprotective activities: ↑ Viability and ↓ intracellular ROS level in glutamate treated HT22 cells ↓ Number of apoptotic cells and pro-apoptotic proteins in glutamate treated HT22 cells ↑ MMP level and mitochondrial function Autophagic suppression: ↓ LC3-II and Beclin-1, and ↑ p62 protein expressions ↑ Activation of PI3K, Akt, and mTOR protein expressions 	[62]
mmh 00000162	Sideritis scardica, (Aerial part), Serbia	(v/v) (ethanol) and fractionated using diethyl ether and ethyl acetate	chlorogenic acid, vanillic acid caffeic	glioma cells and	Anti-glioma activities: ↑ Cytotoxicity in rat C6 glioma cells that was not observed in primary rat astrocytes, ↑ intracellular ROS production, ↑ number of apoptotic cells, ↑ caspase activation, and induce cell cycle proliferation block in rat C6 glioma cells. Autophagic enhancement: ↑ AO-stained acidic cytoplasmic vesicles in C6 glioma cells, ↑ LC3-II and beclin-1 autophagic markers, and ↓ p62 selective target for autophagy-mediated proteolysis	[63]
	<i>Tanacetum</i> <i>cinerariefolium</i> (flower), China	Purchased from Sigma Aldrich	N/A	Neuroblastoma (SH- SY5Y human neuroblastoma cells)	Anti-proliferative activities: ↓ Cell viability of SH-SY5Y cells ↓ MMP level in SH-SY5Y cells ↑ DNA damage in SH-SY5Y cells Autophagic enhancement: ↑ LC3-II/I ratio and beclin-1 while ↓ p62 expression of autophagic markers ↑ Autophagosome-lysosome fusion formation ↑ AMPK activation while ↓ mTOR and 70s6k activation	[64]

Progress in Microbes and Molecular Biology

[65]

<i>Thunbergia laurifolia</i> (leaves), Thailand	Ethanol extract was prepared by mixing 40 g of leaves powder in 400 ml of ethanol using Soxhlet appratu		Neurotoxicity study Glutamate (HT-22 cells)
<i>Urtica dioica</i> (leaves), Northwestern Himalayan, India	The leaves were pulverized and macerated in methano and water solvent (1:1) ratio for 48 h with constant shaking	-	Antidepressant and anxiolytic studies (Male Swiss albino mice)

Ethanolic extract was Phenolic compounds

prepared by using the

lyophilized and triturated ripe fruits with maceration in ethanol (in 1% formic acid), then it was dried and concentrated

	activities in glutamate-treated HT22 cells ↑ MMP levels of glutamate-treated HT22 cells Autophagic suppression: ↓ LC3-II/I ratio autophagic marker ↑ Tom20 mitophagy marker	
Antidepressant and anxiolytic studies (Male Swiss albino mice)	Behavioural improvement: ↑ Mobility in forced swim and tail suspension tests in streptozotocin induced diabetic mice after treatment ↑ Sucrose preference level in diabetic mice ↓ Performance in elevated plus maze task in treated- diabetic mice Protective activities:	[66]
	 ↑ BDNF, TrkB and Cylin D1 expressions at mRNA levels in treated-diabetic mice ↓ iNOS expression at mRNA level in hippocampus tissue ↑ Bcl-2 anti-apoptotic marker at mRNA level in the hippocampus tissue ↓ Neuronal damage in hippocampus region of diabetic mice ↓ DNA fragmentation and number of apoptosis in hippocampus region of diabetic mice 	e
Huntington disease (HEK293 cells)	Autophagic enhancement: ↑ Atg5 and Atg7 autophagic markers at mRNA level in the hippocampus tissue Protective activities: ↓ Aggregation of polyQ ₇₉ -EGFP and Huntingtin in transfected HEK293 cells. Potential autophagic enhancement: Show a trend of increasing in LC3-II and p62 autophagy proteins expression but they are not statistically significant	[67]

Neuroprotective activities:

↑ Viability of glutamate-treated HT22 cells

 \downarrow Intracellular ROS level and \uparrow mRNA expressions of SOD1, SOD2, GPx and CAT antioxidant enzymatic

Frogress in Microbes and Molecular Biology

PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463

Ugni molinae

(fruits), Chile

1		using rotary evaporator				
	Blueberry extract, Vaccinium sect. Cyanococcus, China		Anthocyanin	Alzheimer's disease (APP/PS1 transgenic AD mice and primary hippocampal neurons)	 Neuroprotective activities: ↓ Neuronal injury in the hippocampus of AD mice ↑ Viability of Aβ-treated primary hippocampal neuron Autophagic enhancement: ↑ Number of autophagosomes in hippocampus of AD mice ↑ Autophagosome-lysosome formation in Aβ-treated primary hippocampal neuron ↑ LC3-II, LAMP1 and Cathepsin D protein expression level 	[68]
	Ashwagandha/Indian ginseng, <i>Withania somnifera</i> (roots), Canada	prepared in anhydrous	Withanolides	Parkinson's disease (male Long-Evans hooded rats)	 Neuroprotective activities: ↑ Viability of dopaminergic neurons of paraquat-treated mice ↑ Motoneuron function in paraquat-treated mice ↓ 4-HNE oxidative stress and lipid peroxidation level and ↑ CARP1 apoptotic marker in the midbrain of paraquat-treated mice ↓ Iba-1 pro-inflammatory marker for microglial activation ↑ GDNF and pro-BDNF neurotrophic factor levels Autophagic enhancement: ↑ Beclin-1 autophagic marker 	[69]
		5	Withanolides and alkaloids	Amyotrophic lateral sclerosis (SOD1 ^{G93A} transgenic mice)	Neuroprotective activities: ↑ Lifespan and motor performance of transgenic Huntington's mice ↑ Clearance of SOD1 misfolded proteins ↑ Viability of motor neurons ↓ TLR2, CD68 and COX-2 and phosphorylated-p65 NF-κB inflammatory markers in the spinal cord of Huntington's mice Autophagic enhancement: ↑ LC3-II ratio and ↓p62 autophagic markers	[70]

	Others					
Plant name, common & scientific name, part (root/flower/leave, etc. used), country, formulation name	Sample preparation method (solvents used)	Chemical compounds/ Chemical composition/ Bioactive compounds identified	Human disease (Cell lines/ animal models)	Results	Reference	
Angelica sinensis (Oliv.) Diels (root and rhizome) and Cinnamomum cassia (L.) J. Presl (stem bark)		Ferulic acid, Senkyunolide and Trans-Cinnamic acid	Cerebral Ischemia (male Sprague- Dawley rats	Neuroprotective activities: \uparrow Motor function in the brain of MCAO rats \downarrow Iba-1 pro-inflammatory microglial activator while \uparrow CD206 anti-inflammatory marker \downarrow TLR4, p-IKK β , p-I κ B α , NLRP3, ASC, and caspase-1 neuroinflammatory proteins expressions in brain tissue of MCAO rats \downarrow Bax, caspase-8 and activated-caspase-3 pro- apoptotic proteins while \uparrow Bcl-2 anti-apoptotic protein Autophagic enhancement: \uparrow LC3-II/I ratio and Beclin-1 autophagic proteins expressions in brain tissue of MCAO rats	[71]	
<i>Fragaria ananassa</i> and <i>Vaccinium sect. Cyanococcus</i> United States, blueberry and strawberry diets		N/A	Neuropathology: Radioactive exposure neuronal stress (⁵⁶ Fe particles-irradiated rat)	Neuroprotective activities: ↓ PHF-tau neurodegenerative disease-related protein accumulation Autophagic enhancement: ↓ p62 selective target for autophagy-mediated proteolysis and ↑ Beclin-1 autophagic marker in ⁵⁶ Fe particles-irradiated rat	[72]	
lobata, Coptis chinensis Franch, Scutellaria	were purchased from the Pharmacy Depart- ment of Xuanwu Hospital, Beijing, China. They were soaked with 10 times	N/A	Parkinson's disease (PC-12 cells)	Neuroprotective activities: ↑ Cell viability of MPP+-treated PC12 cells Autophagy enhancement: ↑ Number of autophagosomes ↑ Atg12 and LC3 autophagy protein expressions ↑ <i>Atg12, LC3</i> and <i>Beclin-1</i> gene expressions	[73]	

PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463	Angelica gigas, Astragalus membranaceus, Atractylodis macrocephala, Bupleurum chinense DC., Cimicifuga heracleifolia Kom, Citri unshiu pericarpium, Panax ginseng, and Glycyrrhiza uralensis, Korea, Bojungikgi- tang	30min and decocted twice for 30 mins. The solution was added with final ingredient of Antelope horn powder and kept in 4°C. Purchased from Hankookshinyak, and diluted using autoclaved distilled water
		Purchased from Hankookshinyak

Radix astragali, Radix angelicae

Purchased from N/A Guanzhou Zhixin Chinese Herbal

N/A

N/A

Amyotrophic

Stroke (male

rats)

lateral sclerosis

(SOD1 ^{G93A} transgenic mice)	 proteins in the spinal cord of transgenic mice ↑ Viability of motor neurons in spinal cord ↓ HO-1 and transferrin oxidative stress-related proteins ↓ BAX pro-apoptotic proteins Autophagic enhancement: ↓ TGFβ and phosphorylated mTOR expression level
Amyotrophic lateral sclerosis (hemizygous hSOD ^{G93A} transgenic mice)	Neuroprotective activities: ↓ Microglial activation and inflammatory markers in transgenic ALS mice ↓ Metabolic dysfunction and ↑ Mitochondrial function in ALS mice ↓ Muscle denervation in transgenic ALS mice ↑ Viability of motoneuron and ↓ neuroinflammatory markers

↓ GFAP, Iba-1 and TLR4 neuroinflammatory

Neuroprotective activities:

Autophagic enhancement: ↓ Activation of Akt and mTOR protein expression

[76] Neuroprotective activities: \downarrow Brain infarction volume and \uparrow neurological score Dawley Sprague in post MCAO rats

[74]

[75]

sinensis, Radix paeoniae rubra, Rhizoma ligustici chuanxiong, Flos carthami, Semen persicae and Lumbricus, China, Buyang Huanwu decoction Chinese medicinal formula	Medicine Co. Ltd. China. Purchased from Beijing Tongrentang	N/A	Cerebral Ischemia (male Dawley	 ↓ MDA oxidative stress marker and ↑ CAT and GSH-PX antioxidant enzymatic activities ↓ Neuronal cell death in the brain of post MCAO rats ↑ Neurogenesis <i>via</i> DCX downregulation Autophagic enhancement: ↑ SIRT1, LC3-II, and Beclin-1 autophagic markers while ↓ p62 protein expression Neuroprotective activities: ↓ Cerebral injury and infarct volume in post MCAO 	[77]
	drug store		Sprague rats)	rats ↓ Neuronal injury and apoptosis in brain of post MCAO rats Autophagic enhancement: ↓ LC3-II/I ratio and Beclin-1 autophagic markers	
	N/A	N/A	Spinal cord injury (male Sprague Dawley rats)	 Less in l'hais and Beenin l'autophagic markets Neuroprotective activities: ↑ Motoneuron function in SCI rats Autophagic suppression: ↑ mTOR, while ↓ LC3, and Beclin-1 protein and mRNA expressions 	[78]
Polygonum Multiflorum Thunb, Alpinia Oxyphylla Miq, Juglans Regia L, Panax Ginseng C. A. Mey, Ligusticum wallichii Franch, Salviae Miltiorrhizae Radix, Angelicae Sinensis Radix, and Curcuma aromatica Salisb. Panax Ginseng C. A. Mey China, Bu Shen Huo Xue Chinese medicinal formula	Provided by Yi Ling Medicine Company, Shijiazhuang, China	N/A	Dementia (male Dawley Sprague rats)	Neuroprotective activities: ↑ Cognitive and memory function of VD mice ↓ Neuronal loss and hippocampal damage in VD mice Autophagic suppression: ↓ Number of autophagosomes and autophagosome- lysosome formation ↓ LC3-II/I ratio and Beclin-1 autophagic markers, and ↑ p62 protein expression	[79]
Bupleurum chinese DC, Fossilia Ossia Mastodi, Scutellaria baicalensis	Decoction in boiling water for 45 min, and the crude extract		Epilepsy (Sprague Dawley rats)	Neuroprotective activities: ↓ Seizure frequency in lithium-policarpine-induced epilepsy rat	[80] [

PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463

Georgi, Zingiber officinale Roscoe, panax ginseng C. A. Mey, Cinnamomum cassia, Poriacocos (Schw.) Wolf, Pinellia ternate (Thunb.) Makino, Rheum palmatum L. Ostrea gigas Thunberg, and Ziziphus jujuba Mill, China, Chaihu-Longgu-Muli decoction	to achieve concentration of lg/ml			Autophagic suppression: ↓ Number of autophagosomes in the hippocampus of epilepsy rat ↓ LC3-II and Beclin-1 autophagic markers, while ↑ mTOR protein expression in the cytoplasm of hippocampus in epilepsy rat at both mRNA and protein levels	
Combination of <i>Panax</i> ginseng C. A. Meyer Rhizama and <i>Aconitum</i> carnichaeli Debx, Fuzi, sub roots, China	N/A	Ginsenoside Rg1, Re3, Rb1, and Rd)	Depression (female ICR mice)	Neuroprotective activities: ↑ anti-depressive behaviour and proteins in ICR mice Autophagic suppression: ↓ LC3-II/I ratio and Beclin-1, ↑ p62 protein expressions	[81]
<i>Rhizoma Salviae</i> Miltiorrhizae and <i>Flos</i> <i>Carthami</i> , China, Danhong Chinese medicine	N/A	N/A	Stroke: cerebral Ischemia (male Sprague Dawley rats)	Neuroprotective activities: ↑ Neurological function and ischemic pathological changes in the brain of post MCAO rats Autophagic suppression: ↑ activation of PI3K, Akt, and mTOR protein expressions in rat brain tissue ↓ FOXO3A, Atg12, Atg16L, ULK1, and AMPK protein expressions in rat brain tissue expressions ↓ LC3-II/I and Beclin-1 protein expressions expressions in rat brain tissue	[82]
Scutellaria baicalensis Georgi, Gardeniae fructus Ellis, Phellodendron chinense Schneid, and Coptis chinensis Franch, Taiwan, Huang Lian Jie Du Tang Chinese herbal medicine		N/A		 Neuroprotective activities: ↑ Cell viability of paraquat-treated SH-SY5Y cells ↓ Free radical while ↑ mitochondrial function of paraquat-treated SH-SY5Y cells ↓ Activation of Ub-S65 and Parkin-S65 protein levels in paraquat-treated SH-SY5Y cells Autophagic suppression: 	[83]

NAME 2025 0 1. 20000462 Jai: 10 26077/20004 -00004	Acorus gramineus, Polygala tenuifolia, Panax ginseng, and Wolfiporia cocos, China, Kai-Xin-San	Beijing Tongrentang	N/A	Neurotoxicity study: Polyglutamine- mediated neurotoxicity (<i>C.</i> <i>elegans</i>)	 ↓ PINK1 mitophagy protein expression in paraquattreated SH-SY5Y cells Neuroprotective activities: ↓ Neurotoxicity and behavioural dysfunction in polyQ mutant expressing <i>C. elegans</i> ↓ Oxidative stress level in polyQ mutant expressing <i>C. elegans</i> Autophagic enhancement: ↑ <i>lgg-1</i> autophagic marker in polyQ mutant expressing <i>C. elegans</i> 	[84]
())		Aqueous extract was prepared by dissolving 50 g of herbal formula in 500 ml water with reflux, followed by vacuum dry process	3,6' -disinapoyl sucrose, ginsenoside Rg1, β- asarone, and pachymic acid	Depression (male Wistar rats and primary rat astrocytes)	\downarrow <i>Tnf-a</i> , <i>il-1β</i> , <i>and il-6</i> mRNA expression of neuroinflammatory markers in CUMS rats and primary rat astrocytes \downarrow Activation of inflammasome in CUMS rats and primary rat astrocytes \downarrow Oxidative stress and \uparrow SOD and GSH antioxidant enzymatic activities in CUMS rats and primary rat astrocytes Autophagic enhancement: \uparrow LC3-II and Beclin-1 autophagic markers, and \downarrow p62 protein expression in CUMS rats and primary	[85]
	Helianthus annuus seed, Brassica napus seed, and Zea mays kernels, Belgium, plant- based fats ketogenic diet		N/A	Autophagy based study (male C57BL/6J mice)	rat astrocytes Autophagic enhancement: ↑ Autophagosomes formation in the hippocampus and LC3 puncta ↑ LC3-II/I ratio and Beclin-1 autophagic markers in hippocampal and cortical mRNA level	[86]

Glycyrrhiza uralensis, Atractylodes macrocephala Koidzumi, Panax ginseng, and Astragalus membranaceus, Korea, Korean herbal medicine	Aqueous extract was N/A prepared through maceration for 24 h, and freeze-dried into powder	Amyotrophic lateral sclerosis (hSOD1 ^{G93A} transgenic mice)	 Neuroprotective activities: ↑ Motoneuron function in mucles ALS transgenic mice ↓ TNF-α, GFAP, CD11b neuroinflammatory markers ↓ Oxidative stress in the muscles of ALD transgenie mice Autophagic suppression: ↓ LC3-II/I autophagic marker and p62 protein expression 	[87]
Polygala tenuifolia, Angelica tenuissima, and Dimocarpus longan, Korea, modified Chungsimyeolda-tang		Parkinson's diseas (male C57BL/6J mice and SH-SY5Y cells)	 Ne Neuroprotective activities: ↓ Motoneuron function, loss of dopaminergic neurons in MPTP-induced PD mice, 6-OHDA-induced PD mice and SH-SY5Y cells Autophagic enhancement: ↑ LC3-II/I ratio beclin-1 autophagic markers, and ↓ p62 protein expression in MPTP-induced PD mice, 6-OHDA-induced PD mice and SH-SY5Y cells 	
Bupleurum chinense DC., Angelica sinensis (Oliv.) Diels., Acorus calamus var. angustatus Besser., Paeonia lactiflora Pall., Polygala tenuifolia Willd., Atractylodes macrocephala Koidz., Glycyrrhiza uralensi Fisch., Mentha haplocalyx Briq., Paeonia suffruticosa Andr., Gardenia jasminoides J.Ellis, China, modified Xiaoyao San		Major depressive disorder (C57 mice)	Neuroprotective activities: ↓ CUMS and social isolation-induced depressive- like behaviours ↓ Neuronal injury and cell apoptosis in the hippocampus of CUMS and social isolated mice ↓ BAX pro-apoptotic and ↑ Bcl-2 anti-apoptotic proteins ↑ Mitochondrial AIF while ↓ mitochondrial cytochrome <i>c</i> levels Autophagic enhancement: ↑ Number of autophagosomes ↑ LC3-II/I ratio, Atg3, Atg5, and Atg16 autophagic markers	[89]
·	Decoction prepared N/A by using boiling water at ratio of 1:8, grinded into powder	Depression (N9 cells and ICR mice	Neuroprotective activities: e)↓ Depressive behaviour in LPS-treated mice ↓ Neuroinflammatory proteins in the brain of LPS- treated mice and N9 cells	[90]

	for subsequent application.			 ↓ Microglial activation in the brain of LPS-treated mice ↑ Viability in LPS-treated N9 cells Autophagic enhancement: ↑ Iba-1 and LC3B protein expression in the brain of LPS-treated mice ↓ Activation of PI3K, Akt, and mTOR protein expression in in the brain of LPS-treated mice ↓ CD86 and p62 while ↑ LC3-II/I ratio and Atg5 protein expressions 	2
Pueraria lobata (Willd.) Ohwi, Angelica tenuissima Nakai, Scutellaria baicalensis Georgi, Platycodon grandiflorum (Jacq), Angelicae Dahurica, Cimicifuga heracleifolia Kom, Raphanus sativa L., Polygala tenuifolia (Willd.), Acorus gramineus Soland. and Dimocarpus longan Lour, Korea,	Decoction of 70 g dry MYH in 1000 mL of (distilled water), yield final volume of 100 mL	N/A	(NGF-differentiated	 Neuroprotective activities: A↑ NGF-differentiated PC-12 cell viability against MPP+ and lactacystin -induced cytotoxicity, apartially ↑ LC3-II/I ratio ↑ number of TH-IR cells in SNpc and optical density of TH-IR fibres in ST of MPTP-treated C57BL/6 mice Autophagic enhancement: ↑ LC3-II/I ratio and Beclin 1 autophagic markers in MPP+ and lactacystin treated NGF-differentiated PC-12 cells 	[91]
modified Yeoldahanso-tang Aucklandia lappa Decne, Piper nigrum L, Euphorbia pekinensis Rupr, Callorhinus ursins Linnaeus and Asarum heterotropoides Fr. Var. man- dshuricum (Maxim.) kitag, China, Mu Xiang You Fang	purchased from Anhui Medicinal Materials	e 6-Dehydrocostuslactone (11.12%) Methylarachidonate (9.08%), Methyleugenol (6.03%), Piperine (5.19%), Caryophyllene (4.76%), Costunolide (3.51%), Myristicin (1.82%) and Sesamin (3.00%)	Stroke (PC-12 cells)	Neuroprotective activities: ↑ Cell viability and cytotoxicity of OGD/R-induced PC12 cells ↑ MMP level and ↓ cytosolic calcium ions in OGD/R-induced PC12 cells Autophagy suppression: ↓ MDC-stain autophagic vacuoles and number of autophagosomes ↓ LC3-II/I and Beclin-1 and ↑ p62 autophagy protein expressions ↑ Activation of mTOR and p-70s6k proteins ↓ Activation of AMPK and ULK1	[92]

PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463

Rheum officinale Baill, Saposhnikovia divaricata Schischk,, Gardenia jasminoides J. Ellis, Bovis Calculus Sativus, Bambusa te- xtilis McClure, Magnolia officinalis Rehder & E.H. Wilson, Paeonia veitchii Lynch and Polygonum cuspidatum Siebold & Zucc, China, Tong Shen tablets	Purchased from Dongguan Traditional Chinese Medicine Hospital.	geniposide, paeoniflo- rin, prim-O- glucosylcimifugin, 5-O- methylvisa- mmioside, aloe-emodin, physcion, rhein, mag- nolol, emodin, chrysophanol and polydatin	Ischemic Stroke (male Dawley Sprague rats)	Neuroprotective activities: ↑ Neurological behaviour of post-MCAO rats ↑ Nrf2 and HO-1 antioxidant enzyme expressions ↓ IL-1β and TNF-α neuroinflammatory cytokines in brain tissues of post-MCAO rats ↓ Number of apoptotic cells in brain tissues of post- MCAO rats ↓ Bax and Cytochrome c pro-apoptotic proteins while ↑ Bcl-2 anti-apoptotic protein expressions Autophagic enhancement: ↑ LC3B autophagy protein expression	[93]
Panax notoginseng, Moschus moschiferus , Calculus Bovis and Snake Gall, Pien-Tze- Huang (Chinese medicinal formula)		Taurine, malic acid, citric acid, cholic acid, hyodeoxycholic acid, ursodeoxycholic acid, chenodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, tauroursodeoxycholic acid, glycodeoxycholic acid, glycocholic acid notoginsenoside R1, ginsenosides Rg1, Rb1, Re, Rf, Rd, Rg2, Rg3, Rh1 and muscone		Neuroprotective activities: ↓ IL-1β and IL-18 neuroinflammatory protein, and activation of MLRP3 inflammasome in LPS-treated BV-2 cells ↓ Microglial activation and IL-1β, IL-6, TNF-α, COX-2, iNOS, and MCP-1 neuroinflammatory proteins in the brain of post MCAO rats Autophagic enhancement: ↑ LC3-II and Beclin-1 autophagic markers, and ↓ p62 protein expression in cell line and post MCAO rats ↑ Activation of ULK1 and AMPK protein in cell line ↓ mTOR protein activation in cell line and post MCAO rats	[94]
Panax ginseng, Ophiopogon japonicus (Thunb.), and Fructus schisandrae, China, Shengmai injection	Group	Ginsenoside Re, Ginsenoside Rb1, Ginsenoside Rc, Ginsenoside Rb2, Ginsenoside Rd, Schizandrol A	Stroke: cerebral Ischemia (male C57BL/6J mice)	Neuroprotective activities: ↓ Infarct volume and neuronal injury in reperfusion mice ↑ neurological scores and brain water content of reperfusion mice Autophagic suppression: ↓ numbers of lysosome and autophagosome	[95]

indigotica Fort., Bupleurum chinese DC., Tlaspi arvense L., Verbena officindlis L., Phargmites communistrin Trin, and Glycyrrhiza uralensis Fisch, China, Shufengjiedu capsule Bupleurum chinense DC. N/A	Pharmaceutical, Anhui, China	N/A Stearic acid, Adenosine,	Allergic rhinitis (male Sprague Dawley rats)	 ↓ LC3-II/I and Beclin-1 autophagic markers in the ischemic cortex ↓ AMPKα, ↑mTOR and ↓JNK protein expressions Protective activities: ↓ Serum IgE and number of mast cells in the olfactory epithelium tissue of ovalbumin-treated rats ↓ Small airways obstruction, and ↑ number of neurons in olfactory epithelium ↓ TNF-α and IL-1β neuroinflammatory protein expression levels in serum, lungs, and olfactory epithelium tissue ↓ Activation of caspase-3 pro-apoptotic marker in lung tissue Autophagic enhancement: ↑ Beclin-1 autophagic marker at protein level in lung tissue Neuroprotective activities: 	[96]
radix, <i>Paeonia lactiflora</i> Alba. radix, <i>Citrus</i> <i>aurantinum L., Glycyrrhiza</i> <i>uralensis</i> radix, China, Si-ni- san Chinese medicinal formula			stress (male C57BL/6 mice)	 ↓ Depressive behaviour in CUMS-induced rats ↑ Dendritic spines regulation and GluR2 protein expression Autophagic suppression: ↑ p62 and FTH protein expressions in the hippocampus of CUMS-induced rats ↓ NCOA4 and LC3-II/I protein expression in the hippocampus of CUMS-induced rats 	
Panax ginseng radix, Astragali, Astragalus propinquus radix, herba Cistanche deserticola, Atractylodis macrocephala,	Provided by Xu Chongdao Chinese Herbal Pieces Factory of Shanghai Yaofang Co., Ltd.,		Amyotrophic lateral sclerosis (<i>Adar2</i> knockout mice)	Neuroprotective activities: ↑ Behavioural function and ↓ spinal cells injury in ALS mice Autophagic suppression: ↓ Number of autophagosome in the spinal cord of	[98]

ALS mice

HH PUBLISHER

Poria Cocos,

Glycyrrhiza uralensis radix, and Epimedium brevicornu

China

Maxim, China, Wen-Shen-Jian-Pi Chinese medicinal formula Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk., purchased from First Zingiber officinale Roscoe, Ephedra sinica Stapf, Paeonia lactiflora Pall., Conioselinum anthriscoides. The drug was Panax ginseng C.A.Mey., Prunus amygdalus Batsch, Neolitsea cassia (L.) Kosterm., Aconitum carmichaeli Debeaux. Stephania tetrandra S. Moore, Scutellaria baicalensis Georgi, and Glycyrrhiza glabra L., China, was kept in kept in Xiao-Xu-Ming decoction formula

Homalomena occulta.

nitida, and Angelica

Astragalus membranaceus,

sinensis, Yaobishu Chinese

medicinal decoction formula

The formulation was N/A Affiliated Hospital of Henan University of Chinese Medicine. decocted for 1 h in distilled water in 1:10 ratio (w/v). The suspension was further soaked in 75% ethanol for 24 h at a concentration of 2 g/ml. The extract liquid form after removing the undissolved substances. Provided by N/A Traditional Chinese Angelica dahurica, Callerya medicine Pharmacy of Hunan Provincial People's Hospital

rats)

Astragalus propinquus The ingredients were N/A angelicae sinensis, prunus purchased from cerasus, aarthamus tinctorius Beijing Tongrentang, L., paeonia lactiflora Pall., they were soaked 10

[99] Stroke: cerebral Neuroprotective activities: ↓ Brain infarcted area and neurological deficits in Ischemia (male post MCAO-rats Sprague-Dawley ↓ Neuronal cells injury in the brain tissue of post MCAO-rats ↑ Mitochondrial function of in the brain tissue of post MCAO-rats Autophagic suppression: ↓ Formation of autophagosome-lysosome fusion in the brain tissue of post MCAO-rats ↓ VDAC1, Lamp1 and LC3B autophagic markers in the neuronal cells of the penumbra of the ischemic cortex ↓ LC3B, Beclin1, VDAC1, Lamp1, and p62 autophagic proteins expressions [100] Neuroprotective activities: Lumbar Disc ↓ Inflammatory and pro-apopototic protein levels in TNF-α treated DRG cell and LDH rats ↓ Siegal neurological score and inflammation in LDH rats

Herniation (normal \uparrow Cell proliferation and viability in TNF- α treated DRG neuronal cell DRG cell and Sprague Dawley rats) Autophagic enhancement: ↑ DCN and LEPR cell autophagy related factors in both TNF-α treated DRG cell and LDH rats [101] Stroke: Neuroprotective activities: \uparrow Neurological function while \downarrow brain oedema in Intracerebral haemorrhage (male ICH rats ↓ Neuronal injury in ipsilateral cortex of ICH rats Sprague Dawley

ligusticum chuanxiong, times the mass of ↑ BDNF and TrkB protein expression in vitro and in rats and primary angelica dahurica, asarum distilled water for 1 h cortex neurons) vivo ↓ Number of apoptotic cells in ipsilateral cortex of heterotropoides. Hirudo. and boiled for 30 min glvcvrrhiza glabra, China, for twice, and then ICH rats Yi-Qi-Huo-Xue Chinese ↑ Cell viability of hemin-treated primary cortex concentrated into final volume of 100 traditional decoction neruons mL. Autophagy suppression: ↓ LC3II/I and Beclin-1 autophagy protein expression *in vitro* and *in vivo* [102] Ginkgo biloba, Panax Purchased from Bilobalide, ginkgolide A, Alzheimer's Neuroprotective activities: ginsenoside Rb1, ginseng, Cistanche Shanghai Hongqiao ↑ Cognitive behaviour in AD transgenic mice disease (bEnd3 deserticola Y.C.Ma, and Pharmaceutical Co., ginsenoside Rg1, \uparrow Clearance of A β in AD transgenic mice murine cerebral Acorus gramineus, China, Yi-Ltd, Shanghai, castanoside A, and a-Autophagic suppression: endothelioma cell \downarrow LC3-II/I ratio autophagic marker and \uparrow p62 Zhi-Fang-Dai China. asarone line, and male APP/PS1(B6C3-Tg protein expression in A β_{1-42} -treated bENd3 cells and AD transgenic mice (APP_{swe}, \downarrow RAGE mRNA transcription, \uparrow activation of PSEN1dE9)/Nju) mTOR, CaMKKβ, and AMPK protein expression double-transgenic level in both bENDd3 cells and AD transgenic mice mice) Ferulovltyramine, [103] Phellodendron Chinensis and N/A Neurotoxicity Neuroprotective activities: ↑ Viability of D-galactose treated HT22 cells Anemarrhena asphodeloides neomangiferin, study: D-galactose chlorogenic acid, phellatin, (HT22 cells) Bunge, China, Zhimu-↓ Intracellular ROS and ↑ MMP level in D-Huangbo Chinese medicinal ferulic acid, corypalmine, galactose treated HT22 cells phellodendrine, quercetin, Autophagic enhancement: mangiferin, canadine, 3-↑ PINK1, Parkin, LC3-II/I ratio while ↓ p62 protein feruloylquinic acid, expressions in D-galactose treated HT22 cells rotudine, afzelin, protopine, 5,5'dimethoxylariciresinol 4-O-glucoside, paenol, isoplatydesmine, noroxyhydrastinine,

oxyberberine, jatrorrhizine,

PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463

formula

PMMB 2025, 8, 1; a0000463. doi: 10.36877/pmmb.a0000463

		thalifendine, bebrbeine, timosaponin A-III, anemarsaponin E, cis-N-p- coumaroyltyramine, palmiteine, kihadanin b, timosaponin A-I, smilagenin, anemarsaponin B, limonin, anemarrhenasaponin 1a, sarsasapogenone, markogenin, anermarsaponin G, obacunone			
ensis, pinellia ternate, oma zingiberis, deum vulgare L., rhizome ctylodis macrocephalae, onopsis pilosula, cyrrhiza glabra, Zhi Shi o Pi tang, Chinese itional medicine	Designated formulation was prepared by the Department of Pharmacy, the affiliated Hospital to Changchun	Synephrine, gallic acid, caffeic acid, epicatechin, liquiritin, neringin, hesperidin, neohesperidin, berberine, baicalein, hyperoside, magnolol, honokiol and isoimperatorin	Dyspepsia (male Sprague Dawley rats and PC-12 cells)	Neuroprotective activities: ↓ Cell cytotoxicity and number of apoptotic cells in cort-treated PC12 cells ↓ Apoptotic cell number in FD-induced depressive rats ↓ Intracellular ROS level while ↑ mitochondrial function in cort-treated PC12 cells Autophagic enhancement: ↑ LC3-II/I, Atg5 and Atg7 autophagy proteins function in cort-treated PC12 cells and FD-induced depressive rats ↓ Activation of mTOR protein in cort-treated PC12 cells And FD-induced depressive rats	[104]

