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Abstract: The rise of antibiotic resistance has created an urgent need for the discovery of 

new antibiotic compounds. Streptomycin, the first antibiotic isolated from Streptomyces sp., 

paved the way for discovering other antibiotics for combating bacterial infections. By 

exploring the genome-based biosynthetic potential of various Streptomyces species, a vast 

array of secondary metabolites with potential therapeutic applications can be identified, 

contributing a transformative impact on the field of medicine. However, conventional 

screening approaches on novel natural products (NPs) from Streptomyces sp. have entered a 

bottleneck due to inefficiency. Fortunately, artificial intelligence (AI) and machine learning 

(ML) models enable rapid exploration and prediction of potential antibiotic compounds, 

increasing the probability of discovering new antibacterial compounds. AI-driven drug 

discovery in Streptomyces sp. represents a paradigm shift in the future quest for novel 

pharmaceutical agents. Various ML models have been developed and applied in different 

practical applications. Overall, the ML model is trained using input data and generates 
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outcomes based on prediction output. This review discusses the continued potential of 

Streptomyces sp. as a source of novel NPs, along with the application of ML throughout the 

NP drug discovery pipeline involving genome mining, biological activities prediction, and 

optimization compound production in Streptomyces microbial systems. 

Graphical abstract. The role of machine learning in drug discovery from Streptomyces. 

Keywords: Streptomyces; Secondary metabolites; Natural products; Drug discovery; 

Machine Learning; Artificial Intelligence; SDG 3 Good health and well-being 

 

1. Introduction  

Bioprospecting has played an important role in natural product-based drug discovery 

through the exploration, extraction, and screening of new natural compounds derived from 

plants, microorganisms, and animals for commercially valuable applications, particularly in 

harnessing their therapeutic effects in the pharmaceutical industry [1-5]. During the ‘Golden 

Age’ of antibiotic discovery (1940 to 1970), this approach was used in identifying 23 classes 

of antibiotics that are currently in clinical settings to prevent and treat human diseases [6]. 

Major antibiotic classes include aminoglycosides, cephalosporins, fluoroquinolones, 

macrolides, tetracyclines, and β-lactam. The introduction of antibiotics has remarkably 

changed the therapeutic paradigm and saved millions of lives from a wide range of bacterial 

infections [7]. Most of the new drug classes were identified originating from natural resources 

such as microbes and screened based on molecular, species, and genetic levels [8]. Whole-cell 

screen strategies have been implemented extensively on microorganisms for exploring 

potential biotherapeutic activity within the cellular context [9].  
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Over two-thirds of the clinically used antibiotics are natural products produced by the 

genus Streptomyces which have been considered as a bio-factory of a diverse range of natural 

compounds with antagonistic or pharmacological properties [10]. This high biosynthetic 

potential of Streptomyces was explored actively due to its large genome of 8-10 Mbp with 

high GC contents and large biosynthetic gene clusters (BGCs) that are able to synthesize a 

large variety of secondary metabolites [11, 12]. 

Nowadays, widespread antibiotic resistance has raised alarms in healthcare systems 

across the globe [13, 14]. Antibiotic resistance emerges when bacteria, viruses, fungi and 

parasites evolve different mechanisms to evade the therapeutic effects of antibiotics [15, 16]. 

One of the most widespread infections worldwide is Methicillin-resistant Staphylococcus 

aureus (MRSA) infection where S. aureus becomes resistant to methicillin and other β-lactam 

antibiotics in hospital settings, leading to significant morbidity, and mortality [17, 18]. The 

excessive and inappropriate use of antibiotics in both human medicine and agriculture has 

significantly accelerated the development of antibiotic resistance, making it one of the top 10 

global public health threats as recognized by the World Health Organization (WHO) [15]. 

Discovering new antibiotics has been an alternative approach to combat this growing serious 

health threat. However, nature-driven drug discovery research on microbes has taken a back 

seat and evolved over the years. Traditional drug discovery approaches often face technical 

difficulties, particularly in screening programs, separation and isolation techniques of natural 

products produced from the primary or secondary metabolism of bacterial species under 

laboratory conditions. To address these issues, several technologies, such as combinatorial 

chemistry, high throughput screening (HTS), computational modeling, and artificial 

intelligence (AI), have been developed to accelerate the drug discovery process for natural 

products. [19]. The application of AI and machine learning (ML) incorporated with algorithms 

marks a revolutionary shift in drug discovery and development. AI refers to the development 

of machine learning ML models that simulate human-like intelligence and perform tasks 

adaptively [20]. In natural product discovery, ML techniques have been applied throughout the 

process involving compound screening, detecting biosynthetic gene clusters (BGCs), drug 

target interaction, compound optimisation and compound dereplication [21].  

Herein, this review highlights the continued potential of Streptomyces as a source of 

novel natural products with the current state-of-the-art technology in antimicrobial natural 

product drug discovery and the utility of ML approaches in advancing microbial natural 

product discovery focusing on Streptomyces sp. Employing ML approaches in Streptomyces 

natural products discovery is still relatively nascent and needs to be explored more. 

2. Streptomyces as a Source of Valuable Compounds  

Presently, two-thirds of commercial and therapeutical antibiotics are derived from 

actinomycetes, nature’s topmost antibiotic producers, and almost exclusively from 

Streptomyces sp. [22, 23]. Several previous studies have extensively reported the morphology, 

taxonomy, and genetics of Streptomyces as well as various metabolic pathways and enzymatic 

functions [24-26]. Streptomyces is a Gram-positive bacteria and the largest genus in the 

Actinobacteria phylum living in a wide range of environments, such as harsh, underexplored 
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habitats, terrestrial, marine regions and mangroves [22, 27]. It undergoes a complex life cycle 

that includes vegetative growth, sporulation, and antibiotic production. Besides, 

Streptomyces undergo multiple levels of morphological differentiation in response to the 

growing environments [28]. When a typical Streptomyces spore encounters favourable 

conditions, it forms filamentous branching structures of vegetative mycelium, further 

differentiates into the reproductive aerial mycelium and eventually leads to the formation of 

sporulation septa under nutrient depletion or stressed environment [29]. The mature spore is 

often associated with the production of secondary metabolites, including antibiotics as a 

result of nutrient limitation. Unlike other bacteria, Streptomyces have a large genome size of 

8-10 Mb with an exceptionally high G+C content of > 70% and multiple biosynthetic gene 

clusters (BGCs) [30]. 

Remarkably, Streptomyces account for over 70% of commercially useful antibiotics, 

major types of antibiotics such as aminoglycosides, anthracyclines, glycopeptides, β-lactams, 

macrolides, ansamycins, nucleosides, peptides, polyenes, polyesters, and tetracyclines (Table 

1). The diverse range of natural products with high structural diversity exhibits broad-

spectrum activity against both Gram-positive and Gram-negative bacteria, antiviral, 

antifungal, cytotoxic, antitumor, anti-protozoal, anti-hypertensive, immunosuppressive, 

insecticide, and antioxidative properties [31-33]. Bioactive compounds with different biological 

activities isolated from different Streptomyces are represented in Table 2. In 1943, the first 

aminoglycoside antibiotic, streptomycin was discovered by Albert Schatz and Selman 

Waksman [34]. This antibiotic was isolated from Streptomyces griseus and contributed 

significantly to the treatment of various bacterial infections, including tuberculosis, plague, 

tularemia, and brucellosis. In recognition of his achievements in the discovery, Selman 

Waksman was awarded the Nobel Prize for Medicine in 1952 [35]. Besides, erythromycin is 

an antibiotic produced by Streptomyces erythreus that is used to treat a variety of bacterial 

infections, particularly respiratory tract and skin infections [36]. Streptomyces have profoundly 

revolutionized medicine with the discovery of antibiotics leading to the antibiotic era and 

have significantly reduced live mortality. Exploration of bioactive compounds from 

Streptomyces remains a valuable ally in the search for new solutions to overcome antibiotic 

resistance [37]. The unique and diverse range of bioactive compounds synthesised by 

Streptomycetes have high versatility and broad-spectrum antagonistic activity against both 

Gram-positive and Gram-negative bacteria [38-40]. 

3. Secondary Metabolite Biosynthetic Gene Clusters (smBGCs) in Streptomyces  

Secondary metabolite production in Streptomyces was triggered during the stationary 

phase in response to environmental stress or lack of nutrients. Secondary metabolites are 

natural products that, different from primary metabolites involve normal growth, 

development, and reproduction. In contrast, secondary metabolites are primarily involved in 

the defence system [61]. In Streptomyces, the biosynthesis of secondary metabolites is mainly 

regulated by nonribosomal polyketide synthetase (NRPS) pathways and polyketide 

synthetase (PKS) [62]. Polyketides are secondary metabolites or natural products produced by 

Streptomyces and synthesized through sequential reactions catalyzed by a set of enzyme 
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complexes known as polyketide synthases (PKSs) [63]. Streptomyces-derived bioactive natural 

products are produced by means of complex ‘secondary metabolic’ pathways encoded by the 

secondary metabolite biosynthetic gene clusters (smBGCs) [64]. smBGCs is a grouping of 

genes in genome‐sequenced bacteria that encode the enzymes and proteins involved in the 

pathways of precursor biosynthesis, assembly, modification, transport, and regulation of a 

particular secondary metabolite. Different modular structures within the gene clusters are 

responsible for distinct steps in the secondary metabolite biosynthetic pathway [65]. Each 

smBGC contains a set of core biosynthetic genes, accessory genes, and regulatory elements 

that work synergistically to synthesize secondary metabolites. The expression of these gene 

clusters is tightly controlled by molecular mechanisms in complex regulatory networks in 

response to environmental stresses found in the bacteria’s native habitats [66]. Advances in 

sequencing technology have demonstrated that a typical Streptomyces genome encodes 

around 25–50 BGCs. However, approximately 90% of them are cryptic or silent under 

laboratory fermentation conditions, limiting the synthesis of secondary metabolites [67]. 

Therefore, to maximize secondary metabolite production by discovering the unexplored 

biosynthetic potential of Streptomyces, methods to activate silent BGCs are crucial to current 

natural product-derived drug discovery research.   

Table 1. Lists of classes of antibiotics and their examples from Streptomyces. 

 

Table 2. Bioactive compounds isolated from Streptomyces species with biological activities. 

Class Antibiotics  References 

Aminoglycosides  gentamicin  [41] 

 streptomycin   

 tobramycin   

 neomycin   

 kanamycin   

Anthracyclines  doxorubicin  [42] 

β-lactams  monobactams,   [43] 

 cephalosporin   

 carbapenems   

Macrolides  clarithromycin   [44] 

 erythromycin   

 azithromycin   

Ansamycins  rifamycin  [45] 

Bioactive molecules  Bioactivities Species References  

Bleomycin Anticancer  S. verticillus [46] 

Chloramphenicol Antibiotic S. venezuelae [47] 

Clavulanic acid β-lactamase inhibitor S. clavuligerus [48] 

Clindamycin Antibiotic S. lincolnensis [49] 

Daptomycin Antibiotic S. roseosporus  [50] 

Daunomycin  Antitumor S. peucetius [51] 

Erythromycin Antibiotic S. erythraeus [36] 

FK506 (Tacrolimus) Immunosuppressant S. tsukubaensis [52] 

Ivermectin Antiparasitic S. avermitilis [53] 

http://doi.org/10.1601/nm.7319
http://doi.org/10.1601/nm.6945
http://doi.org/10.1601/nm.7115
http://doi.org/10.1601/nm.7244
http://doi.org/10.1601/nm.6981
http://doi.org/10.1601/nm.6877
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4. Traditional approaches for drug discovery in Streptomyces  

In 1941, Selman Waksman known as the Father of Antibiotics discovered 

streptomycin isolated from Streptomyces griseus through in vitro screening tests against 

pathogenic bacteria, including tuberculosis-causing mycobacteria Woodruff [34]. During the 

golden era of antibiotic discovery in the 1940s to 1960s, his systematic screening approach 

known as the Waksman Platform was widely adopted and implemented by researchers to 

identify antimicrobial agents produced by actinomycetes, particularly Streptomyces [68]. 

Traditionally, the identification and discovery of secondary metabolites and their associated 

biosynthetic gene clusters in Streptomyces were achieved through a combination of classical 

microbiological and molecular biology techniques [69]. To get the first insight into the 

biological activities of soil-borne Streptomyces sp. against pathogens, plenty of Streptomyces 

species were isolated from various environments and screened for the production of 

secondary metabolites through phenotypic screening approaches based on physical 

observations such as pigment production or inhibition zones and biochemical assays [70]. The 

isolation of secondary metabolites by Streptomyces is first performed by fermentation under 

various culture conditions, fractional extraction, and a series of purification steps involving 

chromatography techniques such as column chromatography, thin-layer chromatography 

(TLC), or high-performance liquid chromatography (HPLC). To identify and characterize the 

natural products, the purified compounds are then subjected to structural elucidation using 

spectroscopic methods such as nuclear magnetic resonance (NMR) and mass spectrometry 
[71]. Bioassay-guided fractionation is also used to investigate the bioactivity of fractions of a 

crude extract and isolate the active fractions indicating the specific secondary metabolites [72, 

73]. However, these methods are time-consuming and laborious, and a large fraction of 

secondary metabolites are not expressed actively and cannot be identified under laboratory 

culture conditions.  

In the early 2000s, classical molecular technologies such as genome mining and 

bioinformatic analysis revealed enormous numbers of BGCs in the Streptomyces genomes 
[74]. Unlike the traditional bioactivity-guided isolation of NPs, the genome sequencing and 

bioinformatic analysis of sequenced Streptomyces genomes lead to the exploration and 

prediction of the cryptic or silent smBGCs for novel NPs, which are silent under standard 

laboratory conditions and are potential targets to be activated [75]. To identify smBGCs within 

the Streptomyces genome sequences, several bioinformatics tools have been developed such 

as antiSMASH [76], PRISM [77], NP.searcher [78], ClustScan [79], BLAST [80] and BAGEL [81] 

integrated with databases such antiSMASH database, Minimum Information about a 

Biosynthetic Gene cluster (MIBiG) [82], the biosynthetic gene cluster families database (BIG-

Kanamycin Antibiotic S. kanamyceticus [54] 

Lincomycin Antibiotic S. lincolnensis [55] 

Nystatin Antifungal S. noursei [56] 

Streptomycin Antibiotic S. griseus [57] 

Tetracycline Antibiotic S. aureofaciens and S. rimosus [58, 59] 

Vancomycin Antibiotic S. orientalis [60] 

http://doi.org/10.1601/nm.7089
http://doi.org/10.1601/nm.7115
http://doi.org/10.1601/nm.7174
http://doi.org/10.1601/nm.11075
http://doi.org/10.1601/nm.6870
http://doi.org/10.1601/nm.11080
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FAM) [83] or the Integrated Microbial Genomes Atlas of Biosynthetic gene Clusters (IMG-

ABC) [84]. The urgent need to discover novel secondary metabolites has resulted in the 

development of genomic engineering to activate these cryptic or silent gene clusters [85]. 

Silent smBGCs can be activated through heterologous expression and in situ activation. 

Heterologous expression was established by cloning the target silent gene cluster and 

heterologous expressed in a heterologous host. Besides, the manipulation of smBGCs for 

unlocking silent or cryptic gene clusters can be achieved by introducing constitutive 

promoters, regulating the transcription factors (TFs), and modifying ribosomes through 

targeted mutagenesis involving knock-in or knock-out techniques [67, 86]. In the past studies 

reported by Ochi [85], the CRISPR-Cas9 system was applied to promote the effective 

activation of silent BGCs in five Streptomyces species [85]. In addition, overexpression of 

activator gene under promoter such as bldA successfully triggered the expression of cryptic 

biosynthetic gene clusters for the production of the antibiotics actinorhodin, 

undecylprodigiosin, and methylenomycin [87]. Although all these techniques have shown 

efficacy, there is a high investment and low return rate in silent BGC activation. Nonetheless, 

the application of these methods in studies on NPs discovery provides better insights into the 

hidden potential of microorganisms (Figure 1). By leveraging techniques such as genome 

mining, predictive analysis, and targeted genetic manipulation, new bioactive compounds or 

biosynthetic pathways of NPs can be identified and elucidated from metabolomics which 

involve metabolite profiling. 

 

 

Figure 1. Summary workflows of natural product discovery in Streptomyces. The icons in the figure are 

generated by Freepik from https://www.flaticon.com/. 
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5. Application of artificial intelligence in natural product-derived drug discovery 

research  

In 2020, group researchers at MIT's Jameel Clinic discovered the first powerful 

antibiotic using AI named Halicin and it has made a ground-breaking drug discovery [88]. 

Halicin was initially used for diabetes treatment and was accidentally rediscovered to exhibit 

broad-spectrum antibacterial activity, particularly against multidrug-resistant pathogens like 

Clostridiodes difficile, Acinetobacter baumannii, and Mycobacterium tuberculosis [89]. This 

discovery demonstrated the potential of AI to repurpose existing drugs for new therapeutic 

applications. The researchers employed an ML model and trained using a deep learning 

algorithm with a diverse dataset of about 2,500 FDA-approved drugs and natural products. 

The ML model was trained to recognize patterns of different compounds associated with 

various chemical structures and further correlate with their antibacterial properties [90]. The 

algorithm was designed to predict the effectiveness of potential antibiotics. Remarkably, there 

is a study that highlights the efficacy of Halicin in both in vitro and in vivo settings, with 

particular success in murine models infected with Clostridioides difficile and pan-resistant 

Acinetobacter baumannii [89]. While the research was in its early stages, the discovery of 

Halicin highlighted the potential of AI in accelerating the identification of novel antibiotic 

compounds. It raised hopes to combat the rising threat of antibiotic resistance. AI-based drug 

discovery also showed another breakthrough in discovering a new antibacterial molecule, 

namely abaucin that targets Acinetobacter baumannii, which causes blood, urinary tract, and 

lung infections [65, 91]. The convergence of AI and drug discovery has catalyzed a paradigm 

shift in the pharmaceutical industry to speed up the discovery of new antimicrobial drugs. 

Exploring new NPs with biological activity has been a cornerstone of drug discovery 

research. However, conventional drug discovery in Streptomyces sp. namely, the Waksman 

Platform and other approaches are usually characterized by time-consuming processes, high 

costs and low success rates. Therefore, AI and machine learning (ML) approaches have been 

utilized to bypass the limitations and challenges of traditional approaches hence accelerating 

the drug discovery process in a better efficient, more cost-effective and time-effective way. 

These advanced technologies enable researchers to analyze large number of datasets, predict 

molecular properties, and identify potential drug candidates with greater precision and speed. 

As a result, AI and ML have emerged as invaluable tools in the quest for novel therapeutics 

from natural sources. 

Machine learning (ML) is a subset of AI, which mimics the human cognitive 

processes to interpret information. It is a mathematical model that learns from data, 

understands the patterns and makes predictions or decisions [92]. ML techniques can be 

classified into supervised, unsupervised and semi-supervised learning. In supervised 

learning, a given dataset with known class labels is used to train the algorithm for the 

classification or regression tasks. For unsupervised learning algorithms, the model learns 

from unlabelled data without any explicit guidance or predefined outputs. It is used for the 

three main tasks including clustering, association and dimensionality reduction. Semi-

supervised learning is a hybrid model that includes both supervised and unsupervised 

learning [93]. Supervised learning algorithms, such as Random Forest (RF) [94], Support Vector 
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Machines (SVM) [95], Naive Bayes (NB) [96], decision tree (DT) [97] and linear regression are 

the most commonly used supervised algorithms for NP discovery. Unsupervised learning 

algorithms like Hierarchical Clustering [98] and Chemical Space Mapping [99] also facilitate 

NP discovery research. The choice of ML algorithm depends on several factors, such as the 

size and quality of the data, the type of machine learning task, and the interpretability of 

outputs. In general, constructing a machine learning model consists of multiple steps 

involving data collection and preprocessing, model selection and training, evaluation and 

validation of the model's performance and eventually ends with model deployment and 

continuous monitoring (Figure 2). Initially, the workflow of machine learning starts with data 

collection from various sources and data preprocessing to remove duplicates, handling 

missing values, and normalizing or scaling features. Once the data is pre-processed, a model 

architecture such as decision trees and neural networks with optimal hyperparameters such 

as learning rate, regularization strength, and batch size is selected and trained on the data [100]. 

The model learns patterns and relationships from the input features to make predictions. After 

the model is trained, the model's performance metrics, such as precision, accuracy, or F1 

score are evaluated and validated. After evaluating and validating the model, it can be 

deployed for real-world application or production. To evaluate the model’s performance 

consistency across different data partitions, cross-validation is utilized by randomly dividing 

the original datasets into multiple training and testing sets, typically referred to as "folds." K-

fold cross-validation is employed to compare different models, evaluate efficient models with 

hyperparameters, and subsequently obtain greater model performance with high reliability 

and robustness [101]. This approach enhances the generalization ability of a learning algorithm 

on unseen data so that it can be used to make predictions on new data, resulting in more 

accurate and dependable results in practical applications. In natural product-derived drug 

discovery, ML tools could play a vital role in processes involving detecting BGCs, drug target 

identification, lead compound prioritization and optimization as well as compound screening 

and drug design [102]. 

 

Figure 2. Machine learning workflow. 

5.1. Genome mining  

Genome mining refers to the analysis of genetic information within the genome of 

sequenced microorganisms to identify or characterise bioactive compounds such as natural 

products (NPs) or secondary metabolites [103]. Especially in the case of Streptomyces, a genus 

known for its prolific production of bioactive compounds, genome mining is indispensable 

for identifying novel drug candidates. Utilising NGS platforms like MiSeq (short-read 

sequencing) or PacBio (long-read sequencing), numerous studies have sequenced the whole 

genome of Streptomyces isolated from various environments [104-106]. These advanced 
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approaches have significantly contributed to drug discovery research and expanded our 

understanding of their biosynthetic capabilities. To enhance the efficiency of discovering NPs 

and characterization of their bioactivity, various approaches such as computational tools, 

bioinformatics techniques, and experimental validation methods have been employed to 

establish the gene–metabolite link by identifying biosynthetic genes that encode enzymes 

involved in the biosynthesis of bioactive metabolites [65, 107].  

The biosynthetic machinery of Streptomyces is a highly regulated system, where the 

biosynthetic gene cluster (BGCs) responsible for the production of various NPs such as 

polyketides, nonribosomally synthesized peptides (NRPs), ribosomally synthesized and 

posttranslationally modified peptides (RiPPs), along with alkaloids, and terpene. A novel 

pentacyclic polyketide named formicamycin has been discovered and identified by using 

antiSMASH, which employs profile-hidden Markov models (pHMMs) to identify the BGC 
[108]. In another study, the RiPPER genome mining tool enabled the isolation of novel 

thioamidated RiPPs [109]. RiPPs differ from other natural products like polyketides and NRPs, 

which are typically synthesized by multi-modular enzyme complexes. Unlike other classes 

of NP, RiPPs exhibit unique biosynthetic pathways that lack universal signature biosynthetic 

genes across all RiPP families, making it challenging to develop universal bioinformatics 

tools or predictive models for RiPP genome mining [110]. 

To fully reveal the biosynthetic potential of Streptomyces, genome mining tools that 

incorporate machine learning approaches could be used to detect different classes of NPs. To 

aid in the identification of BGCs for all major NP classes, DeepBGC, Deep-BGCpred and 

BIGCARP were introduced by Hannigan et al. [111], Yang et al. [112], and Rios-Martinez et al. 
[113], respectively. Each genome mining tools implement a deep learning approach such as 

neural networks combined with vector representations of protein family (Pfam) to predict 

BGC boundaries and annotate BGC function associated with the biosynthesis of secondary 

metabolites. It also adopted word embedding techniques such as Word2vec, a natural 

language processing (NLP) algorithm to analyse literature, patents and databases to extract 

information about gene functions, gene-drug associations, natural products, and their 

biosynthesis pathways facilitating the understanding of drug mechanisms and identification 

of potential therapeutic targets [114]. This has streamlined the target selection process, 

accelerating the process of identifying novel targets for drug development. Furthermore, 

NRPSpredictor2 and SANDPUMA (Specificity of Adenylation Domain Prediction Using 

Multiple Algorithms) were developed to predict NRPS adenylation domain specificity [115, 

116]. Both of the tools employ SVM algorithms or other machine learning algorithms to 

identify NRPS BGCs. Deep learning models such as DeepRiPP, Data-driven Exploratory 

Class-independent RiPP TrackER (decRiPPter) and NeuRiPP have been developed to tackle 

these challenges for mining RiPP BGCs [117-119]. A recent study reported that a new class of 

lanthipeptides (termed “class V”) and 42 new RiPP family candidates were identified with 

the help of decRiPPter on genome mining of 1295 Streptomyces genomes. Unlike traditional 

methods, decRiPPter does not rely on prior knowledge of core enzymatic machinery or 

specific modifications. It employs an SVM classifier trained on 175 known RiPP precursors 

regardless of RiPP subclasses. This approach incorporates pan-genomic analysis to identify 
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putative precursor genes located within specialized genomic regions. These genomic regions 

contain multiple enzyme-coding genes and are part of the accessory genome of a genus [120]. 

By employing decRiPPter, researchers have the potential to unlock a treasure trove of 

previously undiscovered natural products of RiPP, paving the way for groundbreaking 

advancements in drug discovery. 

Over the years, other ML-assisted genome mining tools such as the hidden Markov 

model-based method ClusterFinder [121], GECCO17 [122], RiPPMiner-Genome [123], Pytorch 
[124] and SanntiS [125] have been developed and utilized to detect and annotate potential BGCs 

that encoded putative bioactive compounds different classes of NPs. Integrating AI 

technologies with classical approaches might hold tremendous potential for accelerating the 

discovery process of discovering novel drugs from the vast genomic reservoir of 

Streptomyces sp. AI systems help to integrate various data types such as genomics, 

transcriptomics, proteomics, metabolomics, structural data, and bioactivity data. This 

integration enables the discovery of the complex relationships between features and supports 

the development of finely tuned hypothesis [126].  

5.2. Biological activities prediction 

The predictive power of AI extends beyond gene cluster identification. The 

incorporation of automation and AI-powered systems into in silico screening of natural 

products has also revolutionized the initial phase of drug discovery. ML plays a crucial role 

in advancing molecular property prediction (MPP) and chemical reaction prediction (CRP) 
[127] contributing to the discovery of lead compounds. This enables the rapid screening of 

compound libraries against specific drug targets to identify potential bioactive compounds 

with therapeutic activity in Streptomyces strains. The virtual screening of natural products 

(NPs) derived from Streptomyces sp. utilises datasets from the StreptomeDB 2.0 database 

which includes about 2,877 NPs originating from Streptomyces [128]. In ML technology, 

molecular featurization is implemented to digitize chemical structures of novel molecules 

from natural products into a machine-readable format [127]. Molecules have been featured 

through various techniques such as molecular representations, descriptors, fingerprints and 

latent vectors derived from molecular embedding [129]. During the molecular featurization 

process, the chemical structures of the molecules are represented as SMILES (Simplified 

Molecular Input Line Entry System) [130] or international chemical identifier (InChES) [131] 

annotations, images, strings or molecular graphs to serve as input information and datasets 

for machine learning models including various neural network, SVM, multilayer perceptron 

(MLP) and random forest (RF) [132], subsequently generate outputs to predict the biological 

activities of molecules such as antibacterial, antifungal, antiviral, antitumor, or 

immunomodulatory activity (Figure 3). 
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Figure 3. General overview of ML approaches in natural products drug discovery. 

 

In the context of structural elucidation, computational prediction of spectroscopic 

data, mainly NMR, gas/liquid chromatography (GC/LC) or mass spectrometry (MS) could 

be integrated with improved performance of deep learning models for more accurate 

prediction of chemical structures of natural products and theoretical NMR correlation data 
[133]. Deep learning models employ deep neural networks such as Artificial Neural Network 

(ANN), Convolutional Neural Network (CNN) and Graph Neural Network (GNN) can be 

applied in ADMET (Adsorption, Distribution, Metabolism, Excretion, and Toxicity) 

modelling and Quantitative Structure-Activity relationship (QSAR) modelling involving 

various aspects of drug discovery including drug target identification, drug target interaction 

prediction, pharmacokinetics and toxicity of compound [134-137]. This approach could 

computationally predict the biological activity of Streptomyces-derived compounds to target 

proteins based on chemical structures and select targeted compounds with favourable 

pharmacokinetic properties and reduced toxicity risks [138]. The interpretation of results could 

help identify potential compounds, prioritize targeted compounds for testing, and reduce the 

experimental workload in screening [139]. Moreover, AI algorithms such as Random Forest 

and SVM speed up multi-omics data processing [140] and hence dereplicate known compounds 

in natural extracts efficiently [141]. This speeds up the process of identifying novel compounds 

by eliminating redundancy and focusing on unique chemical entities. 
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5.3. Optimisation of bioactive compound production   

The natural fermentation process has been employed for drug discovery in microbes 

where cultivated microbes synthesise naturally occurring bioactive compounds through 

fermentation technology. Some major challenges of microbial fermentation are low-cost 

efficiency of raw material inventory, low quality of biomass concentration and low yield of 

fermentation products. The drug discovery process could be enhanced by improving 

fermentation strategies for the production of secondary metabolites in Streptomyces sp. [142]. 

Therefore, fermentation optimization in terms of incubation time, medium compositions, and 

environmental factors such as temperature and pH are crucial steps to optimize the conditions 

for growing Streptomyces cultures maximize the valuable secondary metabolite yields, and 

determine and minimize the input variables. Conventionally, non-statistical techniques such 

as One-Factor-at-Time (OFAT) and statistical methods such as response surface methodology 

(RSM) have been practised widely for medium optimization [143, 144]. OFAT is a traditional 

experimental design method where one independent variable is varied at a time while all 

other variables remain unchanged. In the context of fermentation optimization, OFAT 

involves altering one fermentation parameter while keeping all other parameters constant and 

observing the resulting changes in fermentation yield. This traditional approach could be 

time-consuming and may overlook synergistic effects that impact overall outcomes due to 

the difficulty in estimating interactions between multiple variables from the experiments. 

RSM is a mathematical approach that employs a few experimental designs such as Box-

Behnken design (BBD) or Central Composite Design (CCD) to model the relationship 

between multiple explanatory variables and one or more response variables. The 

experimental data is then analysed using statistical analysis techniques including multiple 

regression analysis and analysis of variance (ANOVA) to fit mathematical models such as 

higher-order polynomial equations, to predict the response surface and identify the optimal 

combination of fermentation conditions that maximizes the production of desired metabolites 

or bioactive compounds. Even though RSM is extensively used, some associated limitations 

are the assumption of linearity and high dependence on the experimental design that might 

yield biased or unreliable results. Fermentation is a complex system where the output results 

can be influenced by multiple variables [145, 146]. Compared to conventional methods, AI-

driven approaches can analyse complex interactions between variables and adaptively refine 

solutions over time. ML-based predictive models namely ANNs and statistical models 

specifically RSM can be coupled with four evolutionary algorithms (EAs) such as GA, DE, 

simulated annealing algorithm, and particle swarm optimization to optimize the fermentation 

parameters [147-150]. This coupling of machine learning model and EAs signifies powerful, 

hybrid optimisation techniques leveraging the strengths of both paradigms, where machine 

learning models provide predictions while EAs fine-tune and optimize parameters more 

precisely [151]. 

Introducing AI or ML-based approaches in genome mining, compound screening, 

identification of metabolites or bioactive compounds and optimisation of metabolite 

expression have contributed significant impacts in Streptomyces-related drug discovery. 

Research studies involving the application of AI algorithms or models related to 
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Streptomyces-related drug discovery are presented in Table 3. Despite the transformative 

potential, AI systems might have key challenges such as limited data quality, availability, 

heterogeneity, dataset size, and data privacy [152]. During predictive model construction, 

unbalanced active to inactive compound datasets with limited coverage of inactive 

compounds might influence the accuracy of prediction results. Additionally, AI models might 

lack explainability, interpretability, reproducibility and validation on diverse datasets due to 

their underlying complexity. Besides, overfitting might occur when the ML model fits the 

training data too precisely, resulting in poor generalization of new test data [153]. Biases might 

be present in training data including systemic biases, selection bias, and automation bias, 

which could potentially lead to biased predictions and ethical considerations [154]. Hence, the 

accuracy of the prediction may be uncertain when biased data are utilized. Other significant 

challenges in developing and implementing AI in drug discovery are the need for significant 

computational power, expertise, and financial investment. 

Table 3. Research studies implementations of AI algorithms or models in Streptomyces sp. 

Aim of the study  AI algorithms or models Streptomyces strains Findings Ref. 

Genome mining  decRiPPter (Data-driven 

Exploratory Class-

independent RiPP 

TrackER) combines a 

Support Vector Machine 

(SVM) 

Streptomyces 

pristinaespiralis ATCC 

25468 

• Identify 42 novel 

Ribosomally synthesized and 

post-translationally modified 

peptides (RiPP) families 

• Discover novel family of 

lanthipeptides within the 

RiPP biosynthetic gene 

cluster 

[120] 

 DeepT2, DeepBGC and 

antiSMASH model with 

four machine learning 

algorithms (random forest, 

XGBoost, SVM, and 

MLP) 

37 selected 

Streptomyces isolates 

DeepT2 outperforms both DeepBGC 

and antiSMASH in the prediction of 

type II polyketides (T2PK) using only 

KSβ sequences 

[155] 

 genetic algorithm (GA) Streptomyces coelicolor • Identify 11 secondary 

metabolite gene clusters of 

the antibiotic-producing 

eubacterium Streptomyces 

coelicolor 

• identified gene regulator 

based on transcriptomic and 

expression data. 

[156] 

 SVM-based model Streptomyces coelicolor Predict and verify the operon structure 

using different binary classifiers. 

[157] 

 NRPSpredictor2 Streptomyces 

lincolnensis  

Characterized a new nonribosomal 

peptide namely cysteoamide, 1 and 

identified its NRPs biosynthetic gene 

cluster 

[158] 

Strain identification artificial neural network 

(ANN) 

three putatively novel 

Streptomyces species 

Identify members of the three target 

streptomycete taxa. 

[159] 
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Optimisation of 

compound 

production  

MSHub/GNPS (Global 

Natural products Social 

Molecular Networking) 

Streptomyces 

Volatilomes  

(37 selected isolates) 

• Detect and annotate more 

volatile organic compounds 

(VOCs) than using the 

conventional method. 

• Remove the volatilome 

variability between media 

and isolates. 

 

[160] 

 ANN Streptomyces 

flavolimosus 

• Predict the optimal 

conditions that maximize the 

biosynthesis of AuNPs using 

the cell-free supernatant of 

Streptomyces flavolimosus at 

high efficacy compared to 

mathematical models, central 

composite design. 

• Demonstrate antitumor 

properties in-vitro (MCF-7 

human breast cancer and 

Hela carcinoma cell lines) 

and in vivo against Ehrlich 

ascites carcinoma 

[161] 

 Response Surface 

Methodology-Genetic 

Algorithm (RSM-GA) 

Streptomyces rimosus 

MTCC 10792 

This combination approach optimizes 

the medium components for 

extracellular cholesterol oxidase 

(COD) production in Streptomyces 

(3.6 folds higher compared to un-

optimized medium) 

[162] 

 ANN coupled with GA and 

Nelder-Mead downhill 

simplex (NMDS) 

Streptomyces 

sindenensis MTCC 8122 

ANN-NMDS optimization was found 

to be more efficacious compared to 

the ANN-GA optimization maximum 

antibiotic production where 197 

microgram/ml was obtained in ANN-

NMDS optimization; 176 

microgram/ml was obtained in ANN-

GA optimization 

[163] 

 ANN/GA Streptomyces 

triostinicus 

ANN/GA prediction model shows 

better optimal performance in 

actinomycin V yield of 36.7% higher 

than RSM model. 

[164] 

 ANN/GA Streptomyces sp. NICM 

5500 

ANN/GA prediction model shows 

better optimal performance with 60% 

higher COD concentration than RSM 

model. 

[165] 

 GA Streptomyces 

hygroscopicus 

GA predicts optimal cultivation 

parameters which contribute 

maximum antifungal activity 

[166] 
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 ANN Streptomyces 

microflavus 

strain NEAE-83 

ANN prediction model shows better 

accuracy than CCD model and aligns 

closely with the validation 

experimental in optimization of the 

chitosan nanoparticles biosynthesis 

[167] 

 ANN Streptomyces noursei ANN prediction model shows better 

accuracy than RSM model and aligns 

closely with the validation 

experimental in fermentation 

optimisation  

[168] 

 ANN mutant Streptomyces 

durhamensis GC23  

ANN optimization shows higher 

predictive efficiency than RSM and 

aligns closely with the validation 

experimental for cellulase production. 

[169] 

 

6. Conclusion 

The global spread of multidrug-resistant bacterial pathogens has become a major 

threat to the healthcare system and hence driven the urgent need to discover new sources of 

natural products or antibiotics. In the past few decades, Streptomyces sp. has been the largest 

bio-factory for the production of secondary metabolites with a wide range of biological 

activities. However, Streptomyces sp. possesses large smBGCs in which numerous cryptic 

BGCs are silenced under laboratory culture conditions with only a limited number of 

secondary metabolites that have been expressed actively, rendering a largely untapped source 

of drugs. Drug discovery was traditionally performed through random screening and this 

traditional compound screening might be challenging. Besides, optimisation of cultivation 

parameters for bacteria is crucial for enhanced production of secondary metabolites, which 

is significant for the drug discovery process. Indeed, AI tools are increasingly used to enhance 

drug discovery efficacy by offsetting the limitations of ineffective traditional approaches in 

drug discovery. Therefore, applying AI integrated with multidisciplinary techniques is critical 

to unlocking hidden pathways and discovering new natural products in Streptomyces sp.   
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