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Abstract: Methicillin-resistant Staphylococcus aureus (MRSA) infection gives rise to 

significant morbidity and carries a grave prognosis, resulting in the demise of approximately 

21.8% of afflicted individuals on a yearly basis Staphylococcus aureus has the capability to 

induce a myriad of diverse diseases, a phenomenon attributed to its extensive array of 

virulence factors and formation of biofilms. The regulation of key virulence determinants, 

crucial for pathogenicity, is intricately controlled by the staphylococcal accessory regulatory 

(sarA) system. SarA plays a crucial role in the pathogenic mechanisms of S. aureus and the 
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development of biofilms, while simultaneously modulating the synthesis of multiple 

virulence factors and influencing the expression of specific colonization determinants, and 

mutations in sarA partially limit the extent of S. aureus biofilms formation. In this review, 

we present an overview of the current understanding of the molecular mechanisms underlying 

the regulation of sarA gene expression, with a particular emphasis on its relevance in the 

development and sustenance of antimicrobial resistance, along with in the processes of 

biofilm formation and activation of virulence genes in MRSA. This review demonstrated that 

suppressing the expression of sarA gene exerts a notable impact on both biofilm development 

and the pathogenicity of MRSA strains, thereby offering a hopeful approach to the efficient 

management and treatment of MRSA infections. 

Keywords: Staphylococcus aureus; MRSA; sarA; virulence factors; biofilms; agr; SDG 3 

Good health and well-being 

 

1. Introduction 

Staphylococcus aureus, a Gram-positive pathogen, demonstrates high versatility and 

adaptability. It can colonize the skin and mucous membranes as a non-pathogenic 

commensal[1]. Furthermore, S. aureus can proliferate within the bloodstream and diverse 

tissue compartments, giving rise to the onset of severe pathological disorders[2]. It is widely 

recognized as a predominant etiological factor of both hospital-acquired and community-

acquired infections on a global scale[3,4]. The spectrum of S. aureus-related ailments 

encompasses a wide range of manifestations, ranging from minor cutaneous infections to 

critical conditions like pneumonia, osteomyelitis, and endocarditis. Recurrence of infection 

represents a notable facet of S. aureus-associated diseases, with a prevalence of 8-33% in 

cases of skin, soft tissue, and bloodstream infections, contributing significantly to human 

morbidity and mortality[5]. Through the administration of antibiotics on a global scale, 

bacterial infections are effectively managed and prevented. However, the widespread and 

improper utilization of antibiotics exerts selective pressure on the bacterial population, 

thereby fostering the emergence of antibiotic resistance[6,7]. Consequently, the emergence of 

MDR strains significantly diminishes the therapeutic effectiveness of antibiotics against the 

bacterial strain[8]. As stated by the World Health Organization (WHO), antimicrobial 

resistance presents a substantial peril to global public health[9]. Methicillin-resistant 

Staphylococcus aureus (MRSA) is considered one of the extensively concerning multidrug-

resistant (MDR) pathogens and has been recognized as one of the high-priority ESKAPE 

pathogens, thereby new antimicrobial development is urgently needed by the WHO[10]. 

S. aureus exhibits a multitude of cell surface structures and releases virulence factors. 

The global regulatory systems, such as the accessory gene regulator (agr) and staphylococcal 
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accessory regulatory (sarA), primarily govern the secretion of these virulence factors and the 

formation of biofilms[11,12]. SarA is a DNA-binding protein consisting of 124 amino acid 

residues, which is encoded by the sarA locus. The sarA locus consists of three overlapping 

transcripts regulated by three distinct promoters, namely P1, P3, and P2[13]. From a structural 

perspective, SarA is composed of five α-helices, a β-hairpin turn, and a C-terminal region 

within each monomeric unit[14]. Based on the analysis of DNA binding, the SarA protein is 

postulated to exert its regulatory impact on target genes through direct interaction with their 

promoter regions, indirect modulation of regulators (e.g., agr promoter binding), or 

stabilization of mRNA during the logarithmic growth phase, thereby orchestrating the 

modulation of target gene expression[15,16]. The experimental results demonstrate that sarA 

mutants impede biofilm formation and restrict virulence in models of osteomyelitis, infective 

endocarditis, and septic arthritis, thereby emphasizing the pivotal role of sarA in promoting 

pathogenicity[17,18]. In this review, we aimed to discuss the regulatory role of sarA in S. aurues 

biofilm formation and virulence factor production, delineate the molecular mechanisms 

underlying sarA expression regulation, and explore the potential pharmacological approaches 

targeting sarA as a promising therapeutic strategy against S. aureus infections. 

2. Overview of Staphylococcus aureus – an ESKAPE Pathogen  

S. aureus is a significant human pathogen responsible for a broad scope of diseases, 

and it has escalated to a significant global concern owing to the appearance of resistant strains 

and their swift spread. This has led to high morbidity and mortality rates in affected 

individuals[19]. This versatile pathogen was traditionally believed to predominantly colonize 

the nasal cavity, but further investigations have revealed its ability to inhabit various skin 

sites and even the intestinal tract, resulting in a broader scope of dissemination[20,21]. S. 

aureus-mediated skin infections, including furuncles, abscesses, and wound infections, 

represent moderate to severe dermatological conditions with a substantial morbidity rate and 

considerable pain[22]. Notably, the fatality rate associated with bacteraemia infections caused 

by S. aureus exceeds that of numerous highly consequential infectious diseases. In the United 

States, it surpasses the combined mortality resulting from AIDS, tuberculosis, and viral 

hepatitis, emphasizing the severity of the problem posed by the pathogen[23]. Owing to the 

metabolic flexibility of S. aureus, it showcases adaptively and colonization capabilities 

across various environmental contexts, thus significantly impacting its pathogenic potential. 

The extensive array of virulence determinants in S. aureus, including extracellular toxins and 

surface-associated structural factors, are closely associated with the induction of 

pathogenicity and the establishment of persistent infections within the host. Due to their 
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elevated prevalence, these infections impose a significant public health burden, warranting 

the development of more efficacious interventions[24].  

MRSA strains are known for their remarkable clonal architecture, with a limited 

number of specific lineages associated with pandemic clones[25,26]. Early reports of MRSA 

infection were confined to hospital settings and primarily affected immunocompromised 

individuals. It was not until the late 1980s and early 1990s that community-acquired (CA) 

MRSA infections were documented in the Oceania region, thereby initiating the 

dissemination of this significant pathogen across the globe. Based on observations, these 

strains have been observed to impact individuals who lack the typical risk factors associated 

with MRSA infection[25,27]. Furthermore, both CA-MRSA and hospital-acquired (HA)-

MRSA possess the ability to elicit nasal cavity infections, thus presenting difficulties in 

distinguishing between CA- and HA-MRSA[19]. The globally prevalent clonal complexes 

(CC) of MRSA identified by multilocus sequence typing (MLST) encompass CC1, CC5, 

CC8, CC22, CC30, and CC45[25,27]. 

Due to the widespread prevalence of antibiotic resistance in most isolates of S. aureus, 

treating S. aureus infections faces a formidable challenge. Especially noteworthy is the fact 

that all known β-lactam antibiotics are ineffective against MRSA due to resistance, thereby 

rendering MRSA a major clinical menace[28]. According to the 2018 report by the WHO, 

patients infected with MRSA are at a 64% higher risk of mortality compared to those without 

MRSA infection, underscoring the seriousness of this matter[29]. In response to the looming 

threat of bacterial resistance, the Chinese government has launched the "National Action 

Program to Contain Bacterial Resistance (2016-2020)." However, despite these efforts, the 

prevalence of MRSA remains alarmingly high, with a rate of 34.4% reported in 2016[30]. In 

2017, the G20 initiated an international ten-year research and development (R&D) program 

on antibiotic resistance, underscoring the pressing need to address this global concern[31]. 

MRSA strains produce an array of toxins and virulence factors that can circumvent human 

defence systems, resulting in severe infections. In addition, diseases caused by MRSA in 

animals, such as poultry-associated lameness and bovine mastitis, can result in substantial 

financial losses[32]. Considering the elevated occurrence of MRSA infections and their 

profound repercussions on humans and animals alike, the development of innovative 

strategies to ameliorate this ubiquitous public health menace is of paramount importance. 

Bacterial biofilm formation and the production of virulence factor genes are crucial 

aspects contributing to the development of bacterial drug resistance. The clinical severity of 

MRSA is primarily determined by the production of various toxins and adhesion proteins, 

which are crucial for S. aureus to evade the immune system and persist in the host[33]. The 



PMMB 2024, 7, 1; a0000444 5 of 31 

 

virulence of MRSA is heightened by its ability to adhere, synthesize, and develop biofilms, 

which are facilitated by the expression of several toxins that confer protection against host 

defences[34]. 

3. Virulence Factors, Biofilm Formation and Quorum Sensing of S. aureus  

3.1. Virulence Factors and Their Associated Genes 

The profound adaptability of S. aureus to resist host defences and induce a wide 

spectrum of infections is attributable to its capacity to manifest an extensive array of 

virulence determinants[35]. S. aureus virulence factors encompass surface proteins that 

mediate adherence and infiltration of host cells, exoproteins that facilitate circumvention of 

the immune system, and an array of pore-forming and hemolytic toxins[36]. Coordinated 

regulation of these virulence determinants is pivotal for effective infection[37]. Among the 

many virulence factors encoded by S. aureus, staphylococcal enterotoxin A (SEA) is a major 

contributor to S. aureus-mediated gastroenteritis and T-cell activation through its 

immunomodulatory properties as a superantigen[38]. The α-toxin, encoded by the hla gene, is 

a critical virulence factor responsible for the development of pneumonia, sepsis, septic 

arthritis, brain abscesses, and corneal infections in S. aureus. In human strains of S. aureus, 

the modulation and control of virulence factors are commonly regulated by global virulence 

regulators, such as sarA, agrABCD system, and KdpDE two-component system (KdpDE)[39]. 

Furthermore, the regulation of virulence and resistance determinants located on mobile 

genetic elements (MGEs), including staphylococcal cassette chromosomes, pathogenic 

islands, plasmids, phages, transposons, and insertion sequences, is governed by the global 

gene regulators in S. aureus[40].  

MRSA strains generate organic acids through carbohydrate metabolic pathways, with 

acetic acid being the predominant organic acid produced by these bacteria[41]. The production 

of organic acids contributes to a decrease in the pH of the infection site, promoting microbial 

biofilm formation[42]. Biofilms exert a pivotal role in the pathogenic mechanisms of 

infections in both human and animal hosts. They enhance bacterial adherence to epithelial 

cells, facilitate the transmission of diverse toxins, and contribute to the clinical presentations 

of infections[43–45]. 

3.2. Biofilm Formation and Biofilm-Related Genes 

The biofilm formation by S. aureus on the surfaces of implanted medical devices 

promotes bacterial persistence and enhances the severity of infections caused by this 

pathogen[46,47]. Biofilms exert a dampening effect on metabolic activity, thereby endowing 
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inherent resistance to antibiotics. Moreover, the biofilm matrix impedes antibiotic 

permeation by reducing the rate of diffusion, thereby manifesting an obstructive effect that 

augments antibiotic resistance[48–50]. The development of physiologically dormant persister 

cells during biofilm growth further facilitated the emergence of antibiotic tolerance[15,51]. 

Biofilms formed on surfaces within the food industry have acquired resistance to 

disinfectants[52]. 

Biofilm is a complex community of sessile microorganisms embedded within 

substances (EPS) or a mucosal layer[53]. It is a sophisticated architecture comprising proteins, 

DNA, and polysaccharides, commonly known as polysaccharide intercellular adhesin (PIA) 

or poly-N-acetylglucosamine (PNAG) material[54]. PIA, comprising β-1,6 N-

acetylglucosamine residues, is encoded by the intercellular adhesion (ica) locus, 

encompassing the structural genes icaADBC and the regulatory gene icaR. Initially, PIA was 

identified as a critical component involved in biofilm formation. In addition, the PIA is 

considered to be the hallmark component in the development of mature biofilms, which result 

in notorious multi-layered clustering matrices of cells and are responsible for cell-to-cell 

adhesion[55]. However, studies demonstrated that bacterial strains devoid of the ica locus, 

essential for PIA synthesis, are still capable of biofilm formation[56].  Moving forward, 

fibronectin-binding proteins (FnBPs) were demonstrated to substitute PIA in PIA-

independent biofilms, and these FnBP-mediated biofilms are particularly prevalent in highly 

virulent MRSA isolates[57].  

Biofilm formation represents a multifaceted process wherein substantial genetic and 

physiological alterations occur within bacterial cells during their intricate progression. 

Extracellular DNA (eDNA) derived from lysed bacterial cells constitutes a vital constituent 

of the mature biofilm matrix and serves as a pivotal factor in biofilm formation[58]. In S. 

aureus, the regulation of extracellular DNA (eDNA) release predominantly involves the 

autolysin Atl and the cidA/lrgA-mediated holin/antiholin system[59–61].  

The agr and sarA genes, as well as microbial surface molecules, including laminin-

binding protein (Eno), clumping factors A and B (ClfA and ClfB), fnbA, elastin binding 

protein (EbpS), and fibrinogen binding protein (Fib) genes, are the predominant genes 

involved in the formation and maintenance of biofilms. They exhibit a high affinity for 

extracellular matrix proteins of host cells, facilitating the process of biofilm formation[62]. 

The presence of sarA, agr, icaA, icaD, and eight MSCRAMM genes was found to be 

mutually associated in 11.7% of MRSA strains, playing a crucial role in the production and 

maintenance of biofilms[63]. Within these genes, the genes icaA and icaD play a predominant 

role in the biosynthesis of PIA, which constitutes the principal component of the extracellular 
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polysaccharide matrix enveloping bacterial cells within the biofilm. N-acetylglucosamine 

serves as a key constituent within this polysaccharide matrix[63,64]. Furthermore, penicillin-

binding protein 2a (PBP2a) is an essential component during the biofilm formation 

process[65,66]. MRSA strains carrying the mecA gene, which is associated with genetic 

elements, express the PBP2a protein. This protein exhibits low affinity for all β-lactam 

antibiotics, leading to resistance to penicillin in MRSA strains. Additionally, MRSA strains 

carried with the mecA gene promote the formation of protein-based biofilms, impeding the 

development of PIA-dependent biofilms[60,65].  

The development of biofilms is a multifaceted process that involves various stages 

and encompasses three pivotal phases: initial adhesion, biofilm maturation, and bacterial cell 

dispersion[34]. S. aureus exhibits the ability to generate two distinct types of biofilm matrix: 

ica-dependent biofilms and ica-independent biofilms. Of these, the most crucial biofilm 

generated by MRSA isolates is the ica-independent biofilm[67]. The primary constituents of 

the biofilm matrix are proteins, particularly fibronectin-binding proteins[56]. These proteins 

play crucial roles in the development and robustness of biofilms, promoting both the initial 

attachment phase and the maturation stage of biofilm formation[57,68]. Meanwhile, the biofilm 

matrix exhibits a high level of antibiotic resistance, thereby augmenting the bacterium's 

pathogenic potential.  

3.3. Quorum Sensing 

The quorum sensing (QS) mechanism allows bacteria to perceive and respond to 

various environmental stimuli by regulating the bacterial community. During the transition 

from exponential growth to the stationary phase, QS reduces the expression of multiple cell 

surface proteins while increasing the expression of numerous virulence factors, enabling 

intercellular communication and promoting biofilm formation[22,69]. QS pathway operates 

through the exchange of diffusible autoinducer molecules produced by bacteria in the 

extracellular environment. Upon reaching a threshold concentration of accumulated 

autoinducers in the surroundings, diffusion back into the cells occurs, triggering gene 

expression[70]. Interfering with QS through various approaches, such as inhibiting signal 

molecule synthesis, degradation of signal molecules, or disruption of signal molecule binding 

to response regulators, can effectively reduce virulence and facilitate bacterial eradication[71].  

The regulation of bacterial virulence is a complex and multifaceted process involving 

the interplay of various regulatory systems. Among these systems, the accessory gene 

regulator (agr) and sar regulators have been identified as critical regulators of staphylococcal 

virulence. In addition to their notable roles in controlling the expression of QS and biofilm-

related genes, these regulators also play a pivotal role in the regulation of peptidoglycan 
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hydrolases, which are enzymes responsible for cell wall remodelling during bacterial growth 

and division[72]. Furthermore, sigma factor B (σB) has also been implicated in the regulation 

of staphylococcal virulence factors. 

The functional agr regulatory system plays a crucial role in the pathogenicity of S. 

aureus by tightly regulating the expression of an extensive repertoire of virulence factors[73]. 

The agr operon is organized around two distinct promoters, P2 and P3, which give rise to 

two primary transcripts, RNAII and RNAIII, respectively. RNAII encodes AgrB, AgrD, 

AgrC, and AgrA, while RNAIII serves as a post-transcriptional regulatory factor for multiple 

virulence genes[74]. Additionally, the sar locus has been identified as a second regulatory 

locus that is responsible for the agr-dependent regulation of staphylococcal virulence[75].  

The signal sensed by the agr system is an autoinducing peptide (AIP). Once the 

extracellular concentration of the AIP, generated from the AgrD precursor, reaches a 

threshold level, it triggers the activation of the agr system. AgrC binds to AIP and 

phosphorylates AgrA, leading to the activation of the P2 and P3 promoters and subsequent 

transcription of agr system targets. The membrane-localized enzyme AgrB is involved in the 

maturation and export of AIP. RNAIII encodes the delta-toxin-encoding gene hld, and these 

structural regions play a regulatory role in the expression of various virulence factors. 

Additionally, other regulators, including SarA, SrrAB, SarR, and SarX, can either modulate 

the activity of the agr system by either enhancing or inhibiting its function (Figure 1)[76]. 
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Figure 1. The Staphylococcal quorum-sensing system. The expression of the sarA gene is governed by three 

distinct promoters (P1, P2, and P3), with alternative sigma factor (SigB) facilitating the expression of sarA 

through its binding to the P3 promoter. SarR acts as a modulator by binding to all three promoters, interfering 

with the auto-regulatory function of SarA. Additionally, SarA serves as a negative regulator for three SarA-like 

proteins, namely SarH1, SarT, and Rot. Furthermore, SarA plays a pivotal role in activating the agr system, 

whereby the extracellular concentration of the AgrD precursor reaches a threshold level, triggering the 

activation of the Agr system. This activation occurs through the binding of AgrC to AIP and subsequent 

phosphorylation of AgrA, ultimately leading to the activation of the P2 and P3 promoters and transcription of 

agr system targets. The RNAIII transcript encodes the delta-toxin gene (hld)[76]. 

4. An Overview of SarA in S. aureus 

SarA is unequivocally recognized as the central regulator of biofilm formation in S. 

aureus, exerting a critical role in the modulation of virulence factors through its involvement 

in transcriptional regulation and modulation of mRNA stability, has been found to positively 

regulate both the agr system and biofilm accumulation, making it a key factor in S. aureus 

pathogenesis[11, 12]. SarA locus plays a crucial role in the pathogenesis of S. aureus, and SarA, 

the principal virulence regulator, also serves a vital post-translational function by limiting 

protease-mediated degradation and thus enhancing the accumulation of various virulence 

factors. In the early 2000s, analysis of S. aureus genomic sequencing data indicates the 

presence of a minimum of nine major homologs of the SarA protein in the majority of 

genomes[77,78].  

4.1. Molecular Basis of SarA 

SarA is a DNA-binding protein with a molecular weight of 14.7 kDa, and it is 

involved in regulating a total of 120 genes, with 72 genes being upregulated and the 

remaining genes being downregulated. Each monomer of SarA consists of five α-helices, a 

β-hairpin turn, and a C-terminal region[14]. The sarA locus consists of a 1.2 kb DNA region 

that encompasses three overlapping transcripts driven by the sarAP1, sarAP3, and sarAP2 

promoters, each promoter encodes a primary 372 bp sarA open reading frame (ORF), and all 

three transcripts terminate at the same site, resulting in the production of the SarA protein 

with a molecular weight of 14.7 kDa. These DNA-binding proteins engage in specific 

interactions with AT-rich inverted repeat or palindromic sequences located within target 

promoters, thereby governing the expression of multiple genes[79]. The monomeric structure 

of SarA primarily consists of five α-helices and three β-strands. The interaction between α1-

helices from each monomer plays a significant role in dimer formation. The dimerization 

interface exhibits a hydrophobic nature and is conserved across related proteins. The 

characteristic helix-turn-helix (HTH) motif, formed by α3 and α4, is responsible for DNA 

binding and is commonly found in transcription factors. Within the three antiparallel β-

strands (β1, β2, and β3), the β2 and β3 strands form a β-hairpin structure known as the "wing," 
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which interacts with the minor groove of the target DNA[80]. Furthermore, sarA mutants 

exhibited reduced virulence in various infection models, such as osteomyelitis, infective 

endocarditis, and arthritis[17,18], suggesting the crucial role of sarA in regulating virulence 

(Figure 1).  

4.1.1. Other SarA Homologs 

Based on structural data, it has been observed that members belonging to the SarA 

protein family exhibit a comparable mode of DNA binding[80]. Nevertheless, owing to 

differences in their activation domains, distinct SarA homologs display diverse functional 

properties. 

4.1.2. SarR 

SarR, a homologue of the 13.6 kDa SarA regulatory protein, acts as a negative 

regulator of sarA gene expression by binding to the promoters of the sarA locus, including 

P1, P3, and P2. Importantly, SarR specifically binding to the P2 promoter inhibits the 

expression of the agr genes[81]. Notably, SarR exhibits a higher affinity for the agr promoter 

compared to SarA. Thus, SarR can effectively substitute SarA to maintain negative regulation 

of agr activity[82].  

4.1.3. SarT 

The expression of the sarT gene is controlled by the regulatory factors agr and sarA, 

both of which exert inhibitory effects on sarT transcription. Although SarT exerts minimal 

influence on the expression of SarA and SarR, the absence of SarT in a mutant strain leads 

to elevated mRNA levels of the agr effector RNAIII. Hence, there appears to be a reciprocal 

regulatory relationship between SarT and the agr system, potentially forming a negative 

feedback loop. In addition to this regulatory mechanism, SarT also exerts repression on the 

expression of hla gene[83]. The synthesis of SarT is controlled by ArtR, a small noncoding 

RNA. The ArtR molecule interacts with the 5' untranslated region of the sarT mRNA, leading 

to its degradation and subsequent reduction in SarT production[84]. Remarkably, the 

expression of ArtR is under positive regulation by agr, indicating its potential role as a 

mediator in the repression of sarT by agr[76]. 

4.1.4. SarS  

SarS, alternatively referred to as SarH1 is a 29 kDa protein belonging to the SarA 

protein family[85]. Similar to other members of the SarA family, the regulatory network of 

SarA is intricately connected with other SarA family proteins and the agr system. The 



PMMB 2024, 7, 1; a0000444 11 of 31 

 

expression of SarS is significantly inhibited by SarA and agr, as evidenced by previous 

studies[86]. Conversely, SarT has been found to induce the upregulation of SarS expression[87]. 

SarS functions as a dual regulator, acting as a transcriptional repressor for hla and a positive 

regulator for surface spa. Interestingly, the spa gene is positioned immediately downstream 

of the sarS locus. The agr system controls the expression of SarT, which subsequently 

enhances the expression of SarS. In turn, SarS positively regulates the production of the 

spa[87]. SarS potentially contribute to the dissemination of antibiotic resistance through 

SCCmec[88]. 

4.1.5. Rot 

The "repressor of toxins" (Rot) regulatory protein belongs to the SarA-like family and 

has a molecular weight of 15.6 kDa. Mutation of the rot locus in an agr-deficient background 

leads to the reestablishment of toxin production and protease activity, thereby restoring the 

virulence of the bacterium in a rabbit model of endocarditis[89,90]. In the context of toxin 

regulation, Rot functions as a transcriptional repressor for enterotoxin B (seb), hla, proteases 

encoded by the spl and ssp operons, and lipase (geh). It exerts control over the expression of 

these virulence factors, inhibiting their transcription and subsequent production. Rot directly 

binds to the seb promoter, resulting in the direct repression of Enterotoxin B[89]. In contrast, 

the repression of hla is mediated indirectly through the SaeRS Two-Component System 

(TCS). Rot represses sae transcription from the P3 promoter, leading to a subsequent decrease 

in hla expression[91]. 

Additionally, Rot serves as a facilitator of numerous virulence factors, exerting a 

positive regulatory influence on their expression. Rot directly upregulates the spa and the 

SarA-family protein SarS[92]. By binding to the promoter region of these genes, Rot acts as a 

positive regulator for the superantigen-like proteins (Ssl)[93]. RNAIII, the primary mediator 

of the agr system, inhibits the translation of the rot gene[94]. In addition to RNAIII, Rot 

expression is also suppressed by SarA through direct interaction with the Rot promoter[95], 

and by the σB during the stationary growth phase[96]. 

4.1.6. MgrA 

MgrA belongs to the SarA protein family and holds significant importance. 

According to the microarray study, MgrA exerts positive regulatory control over a set of 175 

genes and negative regulatory control over another set of 180 genes in the strain Newman of 

S. aureus[97], including hla, coagulase, spa, nuclease, extracellular serine protease, and 

capsule biosynthesis genes encoding key virulence determinants[98], MgrA is involved in the 
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regulation of SarZ expression, which in turn modulates exoprotein production[99]. 

Additionally, surface proteins are positively regulated by MgrA, while extracellular proteins 

are negatively regulated by MgrA[99]. The transcription of the mgrA gene occurs through two 

distinct promoters, namely P1 and P2. Notably, the mRNA transcript originating from the P2 

promoter is subject to stabilization by RNAIII[100]. 

In addition to the regulation of MgrA production by RNAIII, there is an alternative 

mechanism mediated by small RNAs. Subsequent investigations into MgrA have revealed its 

capacity to modulate the lytRS, lrgAB, and arlRS two-component systems (TCS), all of which 

play crucial roles in S. aureus autolysis[101]. MgrA plays a significant and dualistic role in the 

formation of biofilms in S. aureus. It has been reported that mutations in mgrA can both 

promote[102] and inhibit[103] biofilm formation. This discrepancy is likely attributed to the use 

of different strains of S. aureus. A study revealed that MgrA inhibits eight major surface 

proteins, including Ebh, SraP, and SasG, which are involved in preventing fibrinogen 

clotting. Fibrinogen-mediated clotting increases the production of agr-mediated virulence 

factors and decouples quorum sensing from actual cell density[104]. 

4.2. The biological role of SarA System-Mediated Regulation:  

4.2.1. SarA Regulation of Virulence: 

The analysis of DNA microarrays and proteomics has demonstrated that sarA governs 

the regulation of over 100 genes[105,106]. The sarA locus plays a pivotal role in the modulation 

of virulence factors. SarA exerts its regulatory functions on numerous virulence factors either 

through agr-dependent or -independent pathways[107]. In the agr-dependent pathway, SarA 

enhances the expression of the agr locus. In the agr-independent pathway, it interacts with 

AT-rich inverted repeat or multiple sequences located on the promoters of various target 

virulence genes to regulate the expression of multiple genes[105]. The expression of SarA was 

significantly reduced in the agr-dysfunctional MRSA compared to the agr-functional MRSA, 

suggesting that the defect was upstream of agr[108]. Notably, SarA represses the production 

of cell-surface proteins, such as fibronectin-binding protein and spa, and positively regulates 

the production of extracellular factors, including β-haemolysin, lipase, and autolysin[106]. 

SarA also modulates the accumulation of virulence factors at the intracellular level and 

extracellular protease-mediated degradation[109]. SarA orchestrates the regulation of multiple 

virulence factors, spanning gene transcription, post-transcriptional regulation, intracellular 

accumulation, and extracellular degradation. Furthermore, the presence of sarA has been 

correlated with isolates harbouring the icaADBC genes, specifically implicating its 
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association with the icaACD locus[34,110], indicating a potential linkage between these genes 

in contributing to S. aureus pathogenesis.  

Additionally, SarA also exerts regulatory control over the expression of diverse 

virulence factors through pathways that are dependent-mecA on or independent[18], mecA 

gene represses lipase production, which is considered a hallmark of the sarA regulon[111,112]. 

Studies have shown that the absence of sarA and sigB inhibits the expression of mecA, and 

that increases in lipase activity are associated with a decrease in sarA gene expression[18,112]. 

Apart from SarA[76] and other homologues SarR[82,113], repressor of toxins(Rot)[90,114], 

SarS[85,114], SarT[83,91], and SarU[115], also have significant roles in regulating virulence factor 

expression. 

4.2.2. SarA-Mediated Biofilm Formation 

SarA is also involved in the expression of genes that encode surface-associated 

binding proteins, which contribute to biofilm formation[116,117]. The biofilm formation 

process in S. aureus is regulated by two genetic loci, the sarA and agr quorum-sensing 

systems, which play crucial roles in controlling virulence and the mechanisms underlying the 

development of infection[110,118], and it is controlled by sarA through the agr-independent 

pathway[119]. SarA serves as a pivotal determinant in biofilm formation, as the sarA gene has 

been identified in 84% of biofilms derived from MRSA isolates[34,120]. SarA, through an agr-

independent mechanism, also plays a pivotal role in mediating biofilm formation by 

facilitating the interactions between cells and surfaces, as well as cell-to-cell interactions 

mediated by fnbPA, fnbPB, and other virulence factors[121]. Additionally, sarA negatively 

regulates the expression of autolysin (atl)[105]. SarA exerts regulatory control over multiple 

virulence genes implicated in the formation of the biofilm matrix, encompassing extracellular 

proteases, nucleases, and fnBP. Notably, sarA positively regulates biofilm formation by 

enhancing the expression of fnb genes and suppressing the protease activity that typically 

involves in degradation and remodelling of surface adhesins[121]. Moreover, SarA 

collaboratively interacts with the two-component saeRS system to inhibit the expression of 

extracellular proteases, thereby mitigating the depletion of critical proteins essential for the 

biofilm matrix assembly[116]. Notably, the sarA gene has been found to be strongly associated 

with the polysaccharide poly-N-acetylglucosamine (PNAG)-dependent biofilm formation 

and development in S. aureus[122].  

With that, SarA potentially modulates the long-term persistence of MRSA infections 

through its involvement in biofilm formation. The intricate interplay between eDNA, 

autolysins, and sarA, and their roles in the complex biofilm formation process, highlight the 
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complex and multifaceted nature of S. aureus biofilm formation. The broad-spectrum 

transcription factor SarA is crucial in regulating biofilm formation by modulating the activity 

of atl and fnbps, thereby enabling the bacterium to adapt to various environmental stressors 

including acid pressure or DNA damage. Furthermore, sarA exerts a significant influence on 

the expression of extracellular proteases, resulting in a negative effect on atl and fnbps 

activity[59]. The dynamic interplay between sarA and these key biofilm components 

underscores the intricate regulatory mechanisms that govern S. aureus virulence and 

pathogenicity. 

4.2.3. Mutation studies of the sarA 

Mutations in the sarA gene exhibit a significantly more prominent effect on biofilm 

formation compared to mutations in any other regulatory loci. Mutations in the sarA gene 

have been demonstrated to significantly reduce the ability of S. aureus to form biofilms, 

whereas mutations in agr have minimal impact on biofilm formation in most strains, 

consequently affecting the susceptibility to β-lactam antibiotics. Furthermore, in both in vitro 

and in vivo conditions, sarA mutants of USA300 strains LAC exhibited reduced biofilm 

formation and decreased expression of virulence factors, as well as diminished virulence was 

observed in animal models[123,124]. Recent studies demonstrated that SarA also plays a 

significant role in regulating extracellular protease production, which is directly associated 

with reduced biofilm formation and accumulation of FnbA/FnbB-associated virulence factors 

in an atl/sarA mutant[125].  

Mutation of the sarA gene in S. aureus present exerts substantial inhibitory effects on 

the expression of multiple virulence factors, including ten widely recognized extracellular 

proteases such as aureolysin, SspA, SspB, ScpA, and Aur[63]. Proteases have the ability to 

restore high virulence in sarA mutants[109,124,126]. Additionally, in vitro, studies demonstrated 

that all sarA mutants display reduced biofilm formation in the presence or absence of 

antibiotics[127]. The functional interplay of sarA with other regulatory loci is critical for the 

virulence of S. aureus. The reversal of the increased biofilm formation in the mgrA mutant 

by sarA mutation, independent of aureolysin or SspA production[128]. However, concurrent 

mutations in both sarA and agr give rise to phenotypes resembling those observed in sarA 

single mutations, leading to the complete abrogation of virulence[18,129,130].  

SarA is additionally involved in bacterial adaptation to host and environmental 

settings, as it modulates the expression of sodA, budA, and budB genes in response to 

fluctuations in redox potential and pH levels[131]. The presence of mecRI in S. aureus strains 

is linked to the increased level of RNAIII expression, which is regulated by SarA-mediated 
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transcription. In addition, the sarA gene is known to affect the transcription of hemolysins, 

which play an important role in the pathogenesis of S. aureus infections[132]. These findings 

underscore the importance of understanding the regulation and expression of virulence 

factors in S. aureus in order to develop effective strategies for the prevention and treatment 

of S. aureus infections. With that, these findings highlight that SarA plays a crucial role in 

modulating the pathogenic potential of S. aureus, and that targeting SarA and its downstream 

effectors could be a promising strategy for developing novel antimicrobial therapies. 

5. Targeted Strategies for MRSA Mitigation 

Achieving successful eradication of MRSA requires the administration of antibiotics 

at elevated concentrations and prolonged treatment durations, presenting formidable 

challenges in the management of MRSA infections. Unfortunately, persistent infections 

resulting from healthcare-associated infections related to medical devices often pose 

significant challenges to clinical treatment and frequently lead to treatment failures. This 

challenge has spurred researchers globally to investigate innovative solutions aimed at 

controlling biofilm formation and development, as well as the expression of virulence 

factors[133–135].  Additionally, MRSA demonstrates intrinsic resistance to aminoglycosides, 

macrolides, tetracyclines, chloramphenicol, and lincosamides[136].  Despite the ongoing 

development and utilization of novel antibiotics, bacteria strains can acquire increasing 

resistance to conventional antibiotics through continuous genetic mutations and transfer 

mechanisms. The rapid evolution of antibiotic resistance leads to the gradual obsolescence 

of once-effective conventional antibiotics each year. The emergence of antibiotic-resistant 

bacteria poses significant challenges in the treatment of MRSA infections. For the treatment 

of CA-MRSA infections, some clinicians also recommend avoiding the use of doxycycline, 

clindamycin, and trimethoprim/sulfamethoxazole, as they may exacerbate clinical 

outcomes[137]. However, our understanding of the antibiotic-mediated regulation of 

virulence-associated protein expression and its impact on the regulatory network controlling 

S. aureus virulence remains limited. 

5.1. Modulate the Expression of Virulence Factors in S. aureus 

Based on the aforementioned scenario, targeting virulence factors may present a 

promising therapeutic approach for treating infections. This strategy allows the disarming of 

bacteria without compromising their viability, thereby avoiding selective pressure on 

bacterial growth and reducing the likelihood of resistance emergence[117,138].  
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Several studies have focused on the impact of antibiotics on regulating the expression 

of virulence factors in S. aureus. For instance, subinhibitory concentrations of β-lactam 

antibiotics have been shown to induce the upregulation of Panton-Valentine leukocidin 

(PVL) production, an important virulence factor of S. aureus responsible for leukocyte 

destruction. PVL contributes to poor antibiotic diffusion at the site of infection. Antibiotics 

such as clindamycin and linezolid, which inhibit protein synthesis, can decrease the release 

of toxins, including PVL. In addition, SarA has been identified as a major regulator of PVL 

production[139], SarA positively regulates the transcription of PVL, and its absence leads to 

the inhibition of PVL production[140,141]. During the exponential growth phase, SarA 

activation facilitates the interaction with target gene promoter regions, resulting in the 

repression of toxin expression and subsequent upregulation of PVL expression[95].  

Targeting the virulence regulator SarA could be highly advantageous, as it can disrupt 

various virulence factors rather than individually targeting specific ones[142]. Moreover, SarA 

plays a crucial role in biofilm formation by regulating the expression of extracellular 

proteases, nucleases, and fnbps associated with biofilm formation, impacting the tissue 

persistence of pathogenic targets[127]. Most bacterial isolates obtained from wounds and pus 

samples exhibit positive sarA gene presence. Alterations in the sarA gene lead to methicillin 

resistance, as methicillin significantly influences the metabolic processes involved in biofilm 

formation, ultimately promoting robust biofilm development[143]. Approximately 46.9% of 

strains carrying the sarA gene display multidrug resistance, particularly towards 

erythromycin, ciprofloxacin, clindamycin, and gentamicin[116,124]. Furthermore, single 

nucleotide polymorphisms (SNPs) in sarA have been shown to affect the sensitivity to 

vancomycin (VAN)[144]. Inhibition of sarA expression could serve as an effective approach 

in controlling S. aureus infections, making it a noteworthy avenue for further investigation. 

5.2. Natural Products, Synthetic Compounds, Synergistic Treatment Strategies and Drug 

Repurposing 

Natural products derived from plants[145–148], microbes[149–151], and animals[152], 

present promising avenues for combating MRSA infections by targeting key regulatory genes 

and virulence factors through various mechanisms, including antibiofilm and antivirulence 

activities[153–157]. Among the different sources of natural products, plant extracts have been 

demonstrated for their ability to exert anti-MRSA activity through diverse mechanisms 

including the inhibition of sarA gene expression and downregulation of downstream 

virulence genes regulated by SarA, either via direct or indirect interactions with SarA.  

Different plant extracts were shown to exhibit anti-MRSA activity via modulating the 

sarA gene. For instance, ethanolic extract of Myrtus communis L. exhibited significant 
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inhibition of biofilm formation and development. It was found to markedly suppress the 

expression of sarA, icaA, icaD, and bap genes, while showing no significant impact on agr 

gene[136], suggesting the involvement of regulation of biofilm formation targeting sarA in an 

agr-independent pathway. Similarly, ethanol extract from Torilis japonica (TJE) inhibited 

biofilm formation, suppressed hemolysis, and downregulated the expression of virulence 

factors such as sarA, indicating that TJE may reduce the production of virulence factors by 

downregulating the AgrA-RNAIII system in the S. aureus QS system[158]. Meanwhile, 

another study revealed a non-direct pathway of anti-MRSA activity via regulation of sarA 

exhibited by differential concentrations of essential oil extracted from Chamaecyparis obtuse 

leaves. When the concentration of essential oil exceeded 0.1 mg/mL, the growth of MRSA 

and the production of acid from glucose metabolism were inhibited. Furthermore, at 

concentrations greater than 0.1 mg/mL, the formation of MRSA biofilms was suppressed. 

The expression of agrA was inhibited at concentrations exceeding 0.2 mg/mL, while the 

inhibition of sarA was observed at a concentration of 0.3 mg/mL[159]. The ethanolic extract 

obtained from the root bark of Ulmus pumila exhibited potential antibacterial activity against 

MRSA. At sub-minimum inhibitory concentrations (63-125 μg/mL), it induced a significant 

downregulation in the expression of mecA, sea, agrA, and sarA genes[160], thereby postulating 

its mechanism of action involving the inhibition of agrA or sarA expression, resulting in 

reduced transcription of exotoxin-encoding genes. The ethanolic extract of R. javanica leaves 

inhibits biofilm formation at concentrations higher than 0.05 mg/mL, and significantly 

suppresses the gene expression of key virulence factors such as mecA, sea, agrA, and sarA at 

concentrations of 0.4-1.6 mg/mL[160,161]. Ginkgo biloba exocarp extract (GBEE) exhibits 

dose-dependent inhibition of biofilm formation, with the expression of relevant factors icaA 

and sarA downregulated after 6 hours of treatment. Furthermore, the expression of hld is 

inhibited through the downregulation of sarA[162].  

Moreover, plant-derived secondary metabolites like dihydrocelastrol, 

dihydrocelastryl diacetate[163], quebrachitol[164] and eugenol[165] exert inhibitory effects on 

MRSA virulence factors by targeting sarA, agr and ica genes. Dihydrocelastrol and 

dihydrocelastryl were shown to inhibit biofilm formation and suppress hemolytic activity in 

MRSA[163]. In addition, quebrachitol inhibited the production of staphyloxanthin in MRSA. 

Eugenol significantly inhibited the formation of biofilms in both MRSA and MSSA clinical 

strains by markedly reducing the expression of biofilm- and enterotoxin- related genes, 

including icaD, sarA, and sea genes[165].  

Several plant-derived monoterpenes were reported to exhibit antivirulence and 

antibiofilm activities against MRSA by targeting the SarA regulatory pathways. Myrtenol, a 



PMMB 2024, 7, 1; a0000444 18 of 31 

 

bicyclic alcohol monoterpene, was shown to inhibit the synthesis of virulence factors of 

MRSA, including slime, lipase, α-hemolysin, staphyloxanthin and autolysin. 

Mechanistically, myrtenol was unveiled to down-regulate various virulence genes 

significantly, including sarA, agrA, crtM, hld, geh, fnbA, fnbB, icaA and icaD[166]. Myrtenol 

is one of the essential oil constituents of several aromatic plants, such as the genus Myrtus[167]. 

Meanwhile, another widely studied essential oil constituent, thymol is derived from the genus 

Thymus and is well known for its antibacterial and antibiofilm activities[168]. Thymol 

demonstrated potent inhibitory effects on biofilm formation in Δagr strains, while exhibiting 

negligible impact on biofilm formation in ΔsarA strains, highlighting the sarA-dependent 

antibiofilm activity of thymol[169]. As an isomer of thymol, carvacrol was also shown to 

exhibit anti-MRSA and antibiofilm activities by inhibiting sarA expression and interfering 

with SarA-mecA promoter binding[170]. Selvaraj et al.[171] reported that carcacrol can form 

anionic bonding and hydrogen bonding with SarA and CrtM, respectively, via molecular 

docking analysis.  

Sapindus mukorossi methanolic extract (SMME) exhibited concentration-dependent 

antibiofilm activity, and molecular docking studies indicated close interactions between 

bioactive compounds identified in SMEE and the SarA protein, namely the oleic acid with 

the strongest interaction with SarA was suggested as the major constituent responsible for 

the antibiofilm potential of SMME[172]. Another study also identified a potent interaction 

between hesperidin and the SarA protein in molecular docking analyses, highlighting the 

ability of hesperidin to effectively inhibit the expression of key virulence factors, including 

sarA, icaA, icaD, and crtM [173].  

A newly isolated naphthoquinone-derived carbon skeletons eleucanainones, from the 

bulbs of Eleutherine Americana, exhibits antimicrobial activity against MRSA by inhibiting 

the expression of agrA, cidA, icaA, and sar genes, as observed in in vitro studies[174]. 

Andrographolide sulfonate (AS), a compound extracted from Andrographis paniculata, 

effectively inhibits biofilm formation and improves biofilm permeability by downregulating 

the expression of key bacterial adhesion-related genes, including agrD, sarA, clfA, fnbB, 

icaA, and cidA[175]. 

In addition to phytochemicals, synthetic chemical compounds also offer promising 

avenues for the management of MRSA. A study evaluated the antibiofilm activities of 

synthetic N,O-acetals derived from 2-amino-1,4-napthoquinone and found that among all the 

derivatives, 2-(ethoxymethyl)-amino-1,4-naphthoquinone exhibited strongest inhibitory 

effects on biofilm accumulation by suppressing the sarA-agr regulatory system and 

downregulating the expression of fnbA, a gene that is positively regulated by sarA[176]. A 
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novel piperazine-based copper (II) complex, namely cPAmPiCaTc, was synthesized and 

shown to exert anti-MRSA activity by regulation of sarA and dihydrofolate reductase 

(DFHR) genes[177]. Interestingly, the study also showed that cPAmPiCaTc exhibits excellent 

blood compatibility, opening a new avenue for metallodrug therapeutics against MRSA 

infection. Another study designed and synthesised a novel SarA based inhibitor (SarABI), 4-

[(2,4-difluorobenzyl)amino] cyclohexanol, via a de novo computer-aided discovery 

approach. The antibiofilm activity of SarABI was correlated with its effects on 

downregulating the expression of major virulence genes, such as RNAIII, hld, and fnbA of S. 

aureus[178].   

With the growing understanding of the SarA regulatory mechanisms in the 

pathogenicity and antibiotic resistance of MRSA, numerous studies also evaluated the 

potential of these natural products as an adjuvant to enhance the efficacy of beta-lactam 

antibiotics to combat MRSA by targeting sarA regulatory pathways. Valliammai et al.[169] 

showed that thymol potentiated the antibacterial activity of rifampicin on both planktonic, 

biofilm and persister cells of MRSA. On the other hand, Li et al.[170] showed carvacrol 

improved the efficacy of cefotaxime and oxacillin in both murine models of MRSA 

bacteremia and subcutaneous catheter-related biofilm infection.  

Repurposing of clinically available drugs is another promising strategy to search for 

anti-MRSA drugs which have been well studied for their toxicity and side effects. A study 

revealed that an anti-hypertensive drug, candesartan, exhibits antivirulence activities against 

S. aureus along with domperidone (anti-emetic drug) and miconazole (anti-fungal drug). 

They were shown to exhibit antibiofilm, antihaemolytic and anti-staphyloxanthin production 

activities. Particularly, candesartan, an angiotensin receptor blocker, exhibited the strongest 

inhibitory activities against expressions of virulence-related genes including sarA, CrtM, 

SigB, AgrA, hla, FnbA, and icaA[179].  

6. Conclusions 

The rise of MRSA as a virulent pathogen, characterized by its multidrug resistance 

and biofilm-forming capability, has underscored the urgency of discovering novel 

therapeutics for combating MRSA infections. The exploration of alternative antimicrobial 

agents has directed scientific attention toward natural products, representing a burgeoning 

field of investigation. However, the sarA locus has received significant attention due to its 

crucial role in the formation of S. aureus biofilm. Mutations in the sarA locus have been 

shown to hinder biofilm development, leading to heightened susceptibility to antibiotics and 

enhanced efficacy of therapeutic interventions in animal models. The virulence of S. aureus 
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is attributed to its capacity for adhesion and invasion, which are key factors in its 

pathogenicity. Adhesive capacity is intricately linked to the formation of biofilms, leading to 

enhanced resistance against antibiotics. QS is crucial for facilitating biofilm formation. This 

intricate system facilitates biofilm detachment through the upregulation of autoinducing 

peptides AIPs production or the downregulation of glucose levels. SarA protein with DNA-

binding properties that promote agr expression and RNAIII initiation. Additionally, the 

double mutation of agr and sarA leads to the loss of virulence. 

SarA regulates the production and development of biofilms and directly modulates 

the expression of multiple virulence factors, making it a key regulator of S. aureus 

pathogenicity. Conversely, agr is a binary regulatory system that governs the synthesis of 

toxins and adhesion based on the quorum-sensing population of bacteria prevalent in specific 

ecological niches. SarA exhibits a high affinity for the intergenic region between the P2 and 

P3 promoters within the agr system. Additionally, SarA promotes hemolysin expression 

through direct interaction with the RNAIII transcript, highlighting its ability to coordinate 

gene expression through intricate molecular mechanisms, thus underscoring its significance 

in bacterial pathogenicity. Furthermore, SarA demonstrates a strong affinity for genes 

encoding FnbA and FnbB, Spa, enterotoxin C, and PIA synthesis proteins. This agr-

dependent and agr-independent regulatory mechanism highlights the potential of SarA as a 

therapeutic target for addressing MRSA infections.  

The choice of bacterial strains for studying the anti-MRSA activity targeting SarA is 

currently unrestricted. However, ATCC 33591 is more commonly selected by researchers, 

and clinical MRSA strains isolated from other clinical sites samples, including blood samples 

from patients, are also frequently chosen. Studies investigated the effects of two chemical 

synthetic compounds, SarA inhibitors and 6-TG/MMF, as well as a natural compound, 

eugenol, on MRSA, using animal models in vivo studies. While the other listed compounds 

were only studied in vitro. The lack of efficacy testing in vivo raises concerns about the 

effectiveness of these compounds. Firstly, their efficacy rates are a cause for alarm, and 

secondly, toxicity testing of the extracts is lacking. The exploration of natural compounds 

with inhibitory activity against bacterial toxins and other virulence factors is an ongoing 

endeavour in the field of antimicrobials. Despite some drawbacks associated with natural 

compounds, their wide range of biological properties exhibited by both the compounds 

themselves and their derivatives remains an intriguing area worth exploring. Moreover, it is 

crucial to determine how natural products can demonstrate their efficacy in the face of 

chemical instability. Based on the structure-activity relationship, natural products can be 
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considered as a potential direction, even if their initial apparent activity is weak, as they can 

serve as lead compounds for further structural modifications to achieve higher efficacy. 

Due to the intricate involvement of SarA in regulating the virulence circuitry of 

MRSA, two important questions arise when considering SarA as a therapeutic target: firstly, 

whether there are regulatory sites similar to SarA or even more directly targeted; secondly, 

whether the therapeutic strategies targeting SarA are influenced by the functional status of 

other regulatory sites. The answers to these questions may provide new insights for the 

development of novel therapeutic approaches against MRSA infections. 
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