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Abstract: As the world population grows, it is crucial that food production is linearly 

proportional to the growing demands for food across the globe. The agriculture sector has 

many opportunities as well as challenges in the upcoming years. Many innovations have been 

achieved in the previous years, and more technologies are being researched annually. To 

automise agriculture, unmanned aerial vehicles (UAVs) are extensively being studied to be 

applied in agriculture. This technology is being explored by integrating it with other sciences 

as well, such as vegetation indices. Vegetation indices allow extensive analysis to be done 

on the images taken through the UAV. Currently, many studies are done to monitor crops 

using information obtained from vegetation indices derived from aerial imagery. The crops 

that are monitored are also geotagged so that precise information can be extracted. This paper 

will be assessing the usage of aerial imagery, vegetation indices as well as geotagging to 

monitor crops. 
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1. Introduction 

Conventionally, site-based surveys and sampling, as well as lab-based analysis, have 

been utilised for crop monitoring. However, these methods are labour-intensive, time-

consuming, and damaging to the crops, making them unsuitable for large-scale applications 

(Maimaitijiang et al., 2017). Unlike manual on-site monitoring tracking, remote sensing 

allows non-invasive, fast, and efficient crop monitoring. This is made possible thanks to 

significant advances in unmanned aerial vehicles (UAVs), different sensors, geo-referencing 

systems, and image processing algorithms (Gogoi et al., 2018). Remote sensing using UAVs, 

unlike satellite sensing, allows images of higher spatial and temporal resolution to be taken 

at a low cost, with less interference from atmospheric conditions (Cuaran & Leon, 2021). 

The ability to generate photos in a short amount of time and process them quickly enables 

regular and detailed monitoring of environmental changes even when satellite images are not 

available (Longhitano, 2010). Geo-tagged images and labels, as well as any device with 

precise location annotation, not only able to demarcate recognised geographic terms but also 

indicate new areas of interest based on the data (Rattenbury et al., 2007). In addition,  

geotagging enables the spatial indexing of content. As a result, it is a procedure that increases 

the production of geographical databases, geo-referenced Web resources, and geo-referenced 

multimedia content by using known geographic locations. Furthermore, UAVs can carry 

different sensors, such as a high spectrometer, multi-spectrometer, and radar (Fu et al., 2021). 

A computerised camera that communicates with an independent Global Positioning System 

(GPS) receiver (e.g., via a Bluetooth® connection) may also be used in conjunction with a 

sophisticated camera or Personal Digital Assistant (PDA) with a GPS receiving sensor to 

allow  geotagging . The  photographs taken can then be synced with a GPS tracking gadget 

(Chandan et al., 2021). Besides, many of the multispectral UAV cameras provide high spatial 

resolution spectral information in the Red, Red Edge, and Near Infrared (NIR) bands for 

vegetation applications. Most indices (vegetation indices, VIs) have been designed to 

monitor, analyse, and map temporal and geographical fluctuations of vegetation in both field 

and tree crops based on the combination of these three bands (Yao et al., 2019). The use of 

numerous indices in the interpretation of multispectral drone data plays a very crucial role in 

precision agriculture. As a result, research investigations concentrating on the classification 

and differentiation of these indices are vital to importing critical information (Singh et al., 

2021). Some studies have shown that vegetation indices derived from RGB cameras can 

produce results that are comparable to or better than those obtained from multispectral photos 

(Gracia-Romero et al., 2017). VIs are algorithms used to extract information from the spectral 

signature of vegetation (Janse, 2019). Differences and changes in plant green leaves and 
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canopy spectral properties are used to understand vegetation information from remotely 

sensed photos (Xue & Su, 2017). Variables such as vegetation biochemical properties, 

physical properties, environmental influences, soil background properties, moisture content, 

and others have a substantial impact on the spectral signature of vegetation (Janse, 2019). 

The most common validation approaches are explicit or implicit associations between VIs 

derived and vegetation variables of interest examined on site, such as vegetation cover, Leaf 

Area Index (LAI), biomass, growth, and vigour evaluation. (Xue & Su, 2017). There are 

several applications in which these vegetation indices are used. Some of the applications are 

listed below (Payero et al., (2004), Thenkabail et al., (2000)) 

• Plants pigment estimation  

• Soil nutrient analysis  

• Crop growth management  

• Nutrients Management  

• Pesticides management  

• Selection of growth traits  

• Crop yield estimation  

• Use of remote sensing for crop modelling 

2. Usage of Aerial Imagery for Crop Monitoring  

Agricultural robots, including UAVs, are at the forefront of the smart agriculture 

revolution (Muchiri & Kimathi, 2016). UAVs are not only cheaper than most other 

agricultural machinery, but they are also easier to use (Kim et al., 2019). UAVs (or drones) 

have grown in popularity and use, with prices dropping and more user-friendly software 

being available (Klouček et al., 2019). UAVs are useful because of (a) their spatial resolution, 

which allows for local-scale analysis at the level of individual trees (Komárek et al., 2018) 

and (b) their temporal resolution, which allows for rapid deployment (Müllerová et al., 2017). 

However, agricultural UAVs, on the other hand, have several technical limits, including 

battery efficiency, flying time, communication distance, and payload (Bueren et al., 2015). 

Remote sensing with Unmanned Aircraft Systems (UASs) provides the advantage of 

ultra-high resolution capability, temporal flexibility, and cost-effective data collecting as 

compared to satellite surveillance (Zhang & Kovacs, 2012). These UAVs are mounted with 

RGB, multispectral as well as hyperspectral cameras to effectively monitor crops in large 

plantations (Martins et al., 2021), aimed to develop a new VI specifically to monitor coffee 

ripeness. Four flights were conducted using the following quadcopters throughout the coffee 

ripening period to acquire spectral information on the crop canopy. The Micasense RedEdge 
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MX (MicaSense, Seattle, WA, USA) multispectral camera was mounted on the DJI Matrice 

100 (DJI Innovations, Shenzhen, China). The bands that are registered are 475 nm ±20 nm 

(Blue), 560 nm ±20 nm (Green), 668 nm ±10 nm (Red), 840 nm ±40 nm (NIR), and 717 nm 

±10 nm (RedEdge). Next, DJI Phantom 4 Pro was equipped with an RGB camera which 

captures the bands 450 nm ±16 nm (Blue), 560 nm ±16 nm (Green), and 650 nm ±16 nm 

(Red). Agisoft™ Metashape software, version 1.5.3 (Agisoft LLC, St. Petersburg, Russia) 

was used to process the captured images into georeferenced orthomosaics. The studies 

showed that the spectra of unripe and mature fruits may be easily distinguished in the 

laboratory when the fraction of unripe fruits decreases. However, using aerial imaging, it can 

be difficult to tell them apart, especially when there are extensive crop canopies that cause 

spectral confusion. Due to its cheaper cost compared to the RedEdge MX, the RGB camera 

can be a viable alternative for monitoring coffee ripeness, especially on small farms.   

A study by Zhang et al., (2019) evaluated the use of UAV-based airborne imaging on 

replicated turfgrass field trials for Bermuda grass (Cynodon spp.) and zoysiagrass (Zoysia 

spp.) using two cameras which are GoPro Hero 4 (GoPro, Inc. San Mateo, CA, United States) 

visual camera which acquires 7-megapixel images in true colour (Red, R; Green, G, and Blue, 

B, bands) as well as Parrot Sequoia (MicaSense, Seattle, WA, United States) multispectral 

camera that measures at four narrow spectral bands (green: 530–570 nm; red: 640–680 nm; 

red edge: 730–740 nm; NIR: 770–810 nm) installed individually on two similar quadcopters 

which is the Solo quadcopter (3D Robotics, Berkeley, CA, United States). Pix4Dmapper Pro 

4.2.27 (Pix4D SA, Lausanne, Switzerland) software was used to create the orthomosaic. The 

findings of Zhang et al., (2019) revealed that by utilising a UAV platform, it is possible to 

develop a common model to forecast ground Normalised Difference Vegetation Index 

(NDVI) for both Bermuda grass and zoysiagrass, as well as possibly other species, without 

compromising considerable precision. However, before building a generic model to improve 

data collection effectiveness, some challenges must be solved, and the current model's 

constraints must be considered. Several UAV-based systems and sensors must be evaluated 

for a similar goal to see if the model is platform or sensor-dependent. In addition, Zhang et 

al., (2019) also stated that more studies using improved thermal and hyperspectral sensors 

during drought stress, as well as for disease diagnosis, should be conducted to compare their 

utility to more widely available UAV-based photography platforms. 

3. Application of Vegetation Indices Algorithm in Crop Monitoring 

VIs have been employed in agriculture to classify land cover and identify crop types. 

Although the original bands' spectral information is mostly used for crop classification, VIs 

can provide additional information for more extensive studies (Arvor et al., 2011). VIs have 

been frequently employed for crop monitoring studies, in addition to crop mapping and 

identification, because they can serve as simple and powerful markers of crop maturity, 

stress, and biophysical properties, all of which are influenced by environmental conditions 

and management approaches (Gouveia et al., 2017). Using spectral measurement, many 
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researchers have established VIs for calculating vegetation cover and biochemical 

characteristics quantitatively and qualitatively (Janse, 2019).  

Field variables including plant density, canopy volume, and, most importantly, crop 

production had a direct impact on the VIs performance. These factors make crop monitoring 

to be a challenging task. Moreover, the VIs is also affected by variation of ripeness classes. 

This is due to temporal fruit colour change which caused the removal of chlorophyll as well 

as the presence of anthocyanins which alters the crop canopy spectral reflectance. For 

instance, coffee plants have a high nutritional demand from the fruit filling through ripening, 

especially for NPK, which leads to an increase in nutrient translocation from the leaves to 

the fruits (Laviola et al., 2019; Martins et al., 2021). This can cause nutritional deficiencies, 

as well as variations in leaf reflectance in the visible (400–700 nm) and near-infrared (700–

1100 nm) wavelengths (Ayala & Beyl, 2015), which can be detected more easily with VIs 

that are more sensitive to chlorophyll pigments (Lin et al., 2019). These characteristics 

combined to provide these VIs, particularly the Coffee Ripeness Index (CRI), a stronger 

capacity to distinguish plants with unripe fruits from those with mature fruits because of its 

higher sensitivity to changes in the red wavelength.   

A study by Zhang et al. (2019) showed that Visible Atmospherically Resistant Index 

(VARI) and NDVI data collected from high-resolution UAV photography provide precise 

predictions of ground measurements like the percentage of green cover and NDVI. In the 

investigation, VARI was an excellent predictor of ground percentage of green cover, 

indicating that if the ground percentage of green cover is the focus, a more economical digital 

camera should be used for data gathering. For weed pressure identification (Torres-Sánchez 

et al., 2013), disease incidence detection (Mahlein, 2016; Brodbeck et al., 2017), and drought 

stress detection (Mahlein, 2016; Brodbeck et al., 2017), multi-spectral cameras may yield 

more details.  

Sotille et al. (2020) evaluated the ability of the NDVI from UAVs, Sentinel-2, and 

Landsat 8 to identify vegetation patches in the ice-free environment of Hope Bay, Antarctic 

Peninsula. Using a threshold range of NDVI for vegetation likely in Hope Bay developed 

according to statistical characteristics, vegetation was recognised for algae, mosses, and 

lichens for several platforms, such as UAV, Sentinel-2, and Landsat 8, for algae, mosses, and 

lichens. The NDVI statistical parameters provide thresholds that allow for normalisation and 

classification of pixels with dense vegetation covering in the "nearly certain" class, which is 

typified by the highest values. The same is true for regions classified as "likely" or "extremely 

probable" because they have sparse or non-vibrant vegetation. By combining vegetation type 

details with NDVI categorisation, a trend has been found for Hope Bay communities, with 

areas with a prevalence of algae and mosses primarily assigned to the higher probability 

classes "very probable" and "almost certain," and areas with a prevalence of lichens primarily 

assigned to the lower class "probable”. The categorisation’s findings indicate that there is a 

strong link between uniting classes and vegetation types.  
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Flowering pixel counts generated from the threshold Normalised Difference 

Yellowness Index (NDYI) map were able to approximate genuine flower volumes throughout 

the course of five experimental site years. In general, integrating blooming progress to 

estimate yield requires more information than just a single photograph to ensure consistent 

accuracy. Although the prediction of output values are not particularly way up, findings 

showed that the area under the flowering progress curve (AUFPC) has the potential to 

forecast output, particularly for crops that produce colourful flowers (e.g., canola and cotton) 

under a variety of environmental conditions (Zhang et al., 2021).  

Yuhao et al., (2020) aimed to employ aerial images and an object-based image 

analysis technique to construct rice field maps and to apply soil plant analysis technologies 

to confirm VIs in rice field maps. The author stated that findings revealed that Normalised 

Difference Red Edge Index (NDRE) has the strongest association, followed by Optimised 

Soil Adjusted Vegetation Index (OSAVI) and Soil Adjusted Vegetation Index (SAVI). The 

NDVI has the lowest correlation. In evaluating the level of chlorophyll content in paddy, 

NDRE was one of the best markers. However, in the future, more stations for soil plant 

analysis development (SPAD) data collection should be added to provide good variable maps 

and precise geographic distribution. 

4. Implementation of Geotagging in Aerial Imagery  

The activity of assigning geographic coordinates to media depending on the place of 

a mobile device is known as geotagging. Images, movies, websites, text messages, and QR 

codes can all use geotags to provide time stamps or other contextual information. Bauer et 

al. (2019) developed software that combines computer vision and machine learning 

algorithms to monitor lettuce. The user will need to provide the field's GPS coordinates, 

which can be found in the metadata or on Google Maps. The algorithm would then return the 

harvest region's GPS coordinates. Growers and farmers can use new analysis functions to 

map lettuce size distribution throughout the field, allowing them to identify linked GPS 

tagged produce areas and conduct precision agricultural practices to improve actual yield and 

crop marketability before harvest. Sotille et al. (2020) used eMotion 2 software to provide 

position information (geotags) to photographs taken during flight logs for the monitoring of 

vegetated areas in the ice-free region of Hope Bay, Antarctic peninsula. Sottini et al. (2019) 

used landscape ecology criteria and Geographically Weighted Regression modelling, we 

combined the cumulative viewshed derived from geotagged photo information openly 

accessible on Flickr with raster data on geomorphology, historical locations, and global 

ecosystems. Scientists, administrators, and public planners can utilise this data to develop 

programs, strategies, and regulations to improve the visual quality of the agricultural 

landscape. The models utilised in this study verified the significance of agricultural 

cultivations for landscape value and enabled a regional assessment of agricultural 

externalities consistency, which has apparent consequences for territorial governance and 

rural development decisions. It facilitates the detection of regions of interest where 
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agricultural ecosystem land use planning and management strategies should take non-

material landscape advantages into account. Farmers were located using a Geographic 

Information System and geo-tagged using a mix of public and private sources (GIS). Using 

digital maps as a platform, governments, investors, sectors, regulatory bodies, and farmers 

will be able to connect. (Singh et al., 2021). 

5. Conclusions 

In a nutshell, it is evident that the usage of UAVs, VIs as well as geotagging play  

important roles in facilitating the crop monitoring processes. Into agriculture 4.0, many 

researchers tend to incline towards machine learning algorithms to automate the monitoring 

process as well as to make it more efficient. Moreover, these tools or technologies will 

improve farmers’ lives as it improves yield, and saves time as well as energy.  

It is hoped that more farms, as well as plantations, will adopt these methodologies so 

that any gaps in this research will be identified. The applicability of these studies in the real 

world can also be assessed in terms of limitations as well as the opportunities that are present 

to further enhance these technologies for the betterment of the agricultural sector. 
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