
  

AAFRJ 2023, 4, 2; a0000365; https://doi.org/10.36877/aafrj.a0000365 http://journals.hh-publisher.com/index.php/AAFRJ/index 

ADVANCES IN AGRICULTURAL AND FOOD 

RESEARCH JOURNAL 

Review Article 

Detection and Classification of Basal Stem Rot Disease in 

Oil Palm Using Machine Learning Techniques: A Mini 

Review 

Nur Azuan Husin1,2*, Mohd Hamim Abd Aziz3, Siti Khairunniza-Bejo1,2,4 

1Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 

43400 UPM Serdang, Selangor, Malaysia, nurazuan@upm.edu.my  

2Smart Farming Technology Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, 

Malaysia, skbejo@upm.edu.my  

3Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra 

Malaysia, Bintulu Campus, Bintulu 97008, Malaysia, m_hamim@upm.edu.my  

4Laboratory of Plantation System Technology and Mechanization (PSTM), Institute of Plantation Studies, 

Universiti Putra Malaysia, Serdang 43400, Malaysia 

*Corresponding author: Nur Azuan Husin, Department of Biological and Agricultural Engineering, Faculty of 

Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; nurazuan@upm.edu.my 

Abstract: The oil palm grown around the world to meet the demand for food and bio-fuels, 

is threatened by a fatal disease known as basal stem rot (BSR). Application of machine 

learning (ML) in agriculture keeps increasing with the advancement of technology, especially 

in disease detection. This manuscript presents a mini-review of the different methods relevant 

to BSR disease classification and detection using ML. The steps were discussed, including 

pre-processing and approaches used. Various algorithms, feature extractions and 

classification methods were discussed in the review. The review results revealed that the 

adoption of disease detection and classification methods for BSR disease in oil palm using 

ML approaches is still in its early stages of research. Hence, new tools are needed to fully 

automate the detection and classification processes for practical, operational, fast and 

accurate systems to be used in vast oil palm plantations. 
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1. Introduction 

The oil palm is a member of the monocotyledonous palm family (Arecaceae) and 

palm oil is the most consumed edible oil in the world, representing about 40% of the world’s 

vegetable oil supply (USDA, 2019). It is a perennial tree crop, which better resembles a forest 
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tree than other agricultural crops. As an industrial crop, oil palms are planted in a 

monoculture fashion and a majority of planted oil palms are tissue culture clones 

(McMorrow, 2001; Shafri et al., 2011).  Plants are strongly associated with plenty of 

nutritional benefits and lower the threats of diseases, where oil palm contains a high amount 

of antioxidants, vitamin A, vitamin E and beta carotene (Ebong et al., 1999) that may reduce 

blood cholesterol, protects against heart disease, blocks the growth of cancer cells and 

enhance the anti-cancer medications (Fife, 2017). Demand for palm oil to feed the world and 

for non-fossil fuels continues to increase every year and the production of oil palm has kept 

increasing precede of other major oil crops since 2003 (Mielke, 2018). The world population 

is expected to increase to more than 9 billion in 2050 (Clay, 2011) and a larger population 

highlights the need for greater demand for food and biofuels. One of the factors that can help 

to cater to the increasing demand for palm oil over the coming decades is to overcome the 

disease problem. 

Oil palm is the most efficient oil-bearing crop in the world, where it is 8 to 10 times 

more productive than other major oilseed crops (Abdullah et al., 2010). The two types of oil 

produced from oil palm are palm oil from the mesocarp (a layer of the fruit wall) and palm 

kernel oil from the seed or kernel. Both of these oils are widely used in food applications and 

non-food applications (e.g., in oleochemical industries, animal feed and biofuel). Harvested 

year-round and having an economic lifespan of around 25 to 30 years, oil palm trees produce 

on average 10 tonnes of fruit per hectare. For every 10 tonnes of fresh fruit bunches (FFB), 

approximately 6 tonnes of crude palm oil (CPO) is obtained and about 1 ton of palm kernel 

oil (PKO) is produced per hectare per year (MPOC, 2017). However, oil palm diseases 

related to algal, bacterial and fungal diseases, macro and micronutrient deficiency problems 

and genetic disorders are seriously affected in the production of palm oil (Pornsuriya et al., 

2013). 

Among the major diseases is Ganoderma or the common name basal stem rot (BSR) 

BSR disease is caused by Ganoderma fungal, where Ganoderma boninense (GB) species is 

known as the most devastator species to cause a great economical effect in the palm oil 

industry especially in Southeast Asia (Naher et al., 2015; Chong et al., 2017). The disease 

spreads through root-to-root contact, via airborne spores and from independent secondary 

inoculum in the soil (Abdullah et al., 2000). The specific diagnostic feature of the disease is 

the presence of basidiocarps fruiting bodies on the stems (Rees et al., 2007) (Figure 1). As 

the infection progresses the young unfolded leaves become chlorotic and may reduce in 

length with necrotic tips. It is followed by the flatting down of leaves fronds and the 

appearance of several fully extended but unopened spears in the centre of the crown. (Turner, 

1965; Flood et al., 2010; Azuan et al. (2019); Husin et al. (2020); Husin et al. (2021)). The 

next stage is the rotting of the basal stem along with the collapsing of the plant’s crown giving 

the appearance of a narrow waist at the canopy whereas the spear leaves remain unopened. 

At the final stage, the oil palm easily collapses, leaving stumps and diseased bole tissue in 

the ground (Paterson, 2007). 
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Figure 1. Symptoms of BSR disease 

Plant diseases are responsible for major economic and agricultural production losses. 

Identification of plant disease is vital to avoid fatalities in the quality and quantity of 

agricultural products. Research in image processing for plant disease detection has grown 

rapidly over the past decades (Golhani et al., 2018). Machine learning (ML) has been applied 

in various fields including bioinformatics, aquaculture, food and precision farming, presently 

also termed as digital farming (Liakos et al., 2018). ML approach has emerged to facilitate 

monitoring and early information on plant health for strategic management strategies. In the 

agriculture industry, plant diseases are primarily responsible for the reduction in production 

which causes national economic losses. 

In this paper, we present a mini-review of the ML applications in the detection and 

classification of BSR disease in oil palm fields. A limited number of relevant papers are 

presented, despite the importance of this subject. The structure of the present work is as 

follows: Section 2 discusses the ML terminology, definition and common learning models. 

Section 3 describes the application of ML for BSR disease detection and classification. 

Finally, Section 4 concludes the paper with further research directions. Due to the high 

number of acronyms used in related scientific studies, Table 1 lists all the acronyms that are 

used in this work. 
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Table 1. Acronyms use in ML 

Acronyms Description 

NN Neural network 

DT Decision tree 

SVM Support vector machine 

kNB Kernel Naïve Bayes 

CNN Convolution neural network 

LDA Linear discriminant analysis 

LS Least squares 

MLR Multiple linear regression 

PCA Principal component analysis 

PLS partial least squares 

RF Random forest 

DBSCAN Density-based spatial clustering of applications with noise 

SVD Singular value decomposition 

GMM Gaussian mixture model 

kNN k-nearest neighbour 

HCA Hierarchical cluster analysis 

 GA 

CART 

Genetic algorithm 

Classification and regression tree 

2. An Overview of Machine Learning (ML) 

ML is a form of artificial intelligence (AI) that simulates the way humans learn, which 

uses software applications and historical input to predict outcomes and gradually improve its 

accuracy without being explicitly instructed. Depending on the nature of learning, ML tasks 

are often categorised into multiple broad groups such as learning types – supervised or 

unsupervised, and learning models – dimensional reduction, classification or regression. A 

general diagram of the ML approach is shown in Figure 2. 

 

Figure 2. A general schematic flow diagram of ML approach 
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Basically, there are two ML paradigms — supervised and unsupervised learning 

(Figure 2). Supervised learning is created to use labelled training datasets that were designed 

to “supervise” algorithms in classifying or predicting outcomes. Supervised learning models 

can be further grouped for two main tasks — classification and regression. Classification is 

the process of grouping the output into different categories or classes based on one or more 

input variables and mapping it to a discrete value. Linear classifiers, SVMs, DTs and RFs are 

common types of classification algorithms. Regression is another type of supervised learning 

method that uses mathematical methods to understand the relationship between a single 

dependent/output variable and one or more other independent/input variables. It is used when 

the value of the output variable is continuous or real, and some popular regression algorithms 

are linear regression, logistic regression and polynomial regression. 

Table 2. Examples of ML algorithms’ classification 

ML 

Algorithms 
Continuous Categorical 

Supervised Classification: DT, RF 

Regression: LDA, 

Linear, 

Polynomial 

Classification: 

kNN, Trees, 

Naïve-Bayes, 

SVM 

Regression: 

Logistic, 

PLS 

Unsupervised 

Clustering: k-Means, 

DBSCAN, GMMs, 

Hierarchical 

Clustering 

Dimensional 

Reduction: PCA, 

SVD 

Association 

Analysis: Apriori, 

FP-Growth 

Hidden 

Markov 

Model 

Meanwhile, unsupervised learning works with unlabelled datasets, therefore the 

algorithms discover hidden patterns without supervision. Unsupervised learning models can 

be further grouped into three main tasks — clustering, association and dimensionality 

reduction. Clustering is a data mining technique used when we want to find the inherent 

groups from the data. It is a way to group unlabelled data and find hidden patterns based on 

their similarities or differences. Association is another type of unsupervised learning method 

that uses different rules to find relationships among variables in a given dataset within a large 

dataset. This learning algorithm's primary goal is to identify the dependencies between data 

items and map the variables accordingly. Dimensionality reduction is used to reduce the 

number of data inputs, features or dimensions to a manageable size while also preserving the 

data integrity. Usually, this technique is used in the pre-processing data stage or to remove 

noise from data and to improve the data. 
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2.1 Commonly Used ML Methods 

Mostly, ML contains the pre-processing of the plant structure consisting of 

segmentation, colour extraction and specific data extraction like spectral data and filtration 

of images. Numerous well-known ML models have been created and used by researchers for 

categorisation and prediction. The sections below provide explanations for some of them 

which are SVM, NN and PCA. 

2.1.1 Support Vector Machine (SVM) 

SVM is currently considered one of the most widely used and best-performing 

classification techniques (O’Grady, 2013). SVM classifies data by finding the best 

hyperplane in a number of dimensional spaces that maximises the separation of the data (Li 

et al., 2013). The largest margin between the classes is considered the best hyperplane. For 

example, Medium Gaussian means the margin of the separation between the classes was set 

to medium distinctions and the Gaussian works as the kernel. The value of the kernel depends 

on the distance from the origin or some setting point. SVM uses a subset of training points 

in the decision function called support vectors. Using different kernels, it can work through 

the separation between classes (Kaestner, 2013). Two concepts used in SVM for the study 

are soft margin and kernel trick. The soft margin attempts to compromise the separations that 

minimises the misclassification and maximises the margin of the classes. The kernel trick is 

to separate the non-linear problem in higher dimensional space i.e., it converts not separable 

problem to separable problem. Figure 3 shows examples of kernels such as linear, polynomial 

and Gaussian (radial basis function) (Ben-Hur, 2008). It shows that the Gaussian kernel 

provides more flexibility in separating the classes compared to linear and polynomial kernels. 

Then, based on the Gaussian kernel Equation 1, different values of parameter sigma (σ) were 

used to find the best fit in reducing the generalisation error and over-fitting problem. 

Sometimes, there were some points that were misclassified, since it was difficult to find a 

classifier that is perfect and ideal for every data. 

𝑝(𝑥) =
1

√2𝜋𝜎2
exp(−

(𝑥 −  𝜇)2

2𝜎2
) 

where       p is density with respect to the Lebesgue 

             µ and 𝜎2 are the mean and variance of x. 

(1) 
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Figure 3. Examples of soft margin and kernel tricks in SVM (Ben-Hur, 2008) 

2.1.2 Neural Networks (NNs) 

NN is based on the inception of the human brain with neuron nodes interconnected 

like a web, which is complex and nonlinear for processing information (Shanmuganathan & 

Samarasinghe, 2016). A NN is characterised by its pattern of connections between the 

neurons (architecture) and its method of determining the weights on the connections 

(algorithm) (Fausett. 1994). A large number of new and modified NNs were developed to 

solve problems and used for data modelling and function approximation (Basheer & Hajmeer, 

2000). In order to solve the nonlinearly separable problems, the input layer and the output layer 

are needed, which construct the multilayer perceptron (MLP). The hidden layer is used to process 

the information from the input layer and pass it to the output layer (Figure 4). The hidden layer 

does not interact with external factors, while the addition of the layers further its ability to solve 

more complex problems (Basheer & Hajmeer, 2000). One example of the artificial neural 

network (ANN) approach is backpropagation (BP). The term BP refers to the way the error 

computed at the output side is propagated backward to the hidden layer, and finally to the input 

layer. Error term will be estimated when compared with single training with the actual output 

values. The error will be back propagated to the network and used to adjust the error term until 

the minimum error is achieved, which is an iterative procedure. Detailed explanations of the 

working principle of ANN can be found in Haykin (1994). 
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Figure 4. Structure of ANN 

2.1.3 Principle component analysis (PCA) 

PCA is based on the transformation of the original data into a set of linearly 

uncorrelated variables, called Principal Components (PCs) (Panigrahi, 2014). The aim is to 

reduce the amount of data and to create predictive models. In PCA, the eigenvectors of the 

PCs determine the direction of the new feature space, and the eigenvalues determine their 

magnitude. In other words, the eigenvalues explain the variance of the data along the new 

feature axes.  Meanwhile, the loading matrix is a correlation between the original variables 

(parameters) and the PCs. The closer the value is to one, the greater the effect of the PC on 

the parameter. To infer a correlation, there should be a clustering on a two-dimensional 

loading plot, and the squared cosine should be greater than one-half (David & Jacobs, 2014). 

The greater the squared cosine, the greater the relationship with the corresponding PCs. 

Several conditions have been proposed to determine how many PCs should be retained and 

excluded. One common condition is to ignore PCs at the point at which the next PC offers 

little increase in the total variance explained. A second condition is to include all those PCs 

up to a predetermined total percentage variance explained from the original data, such as 90% 

(Bonate, 2011). A third condition is to ignore the last PCs whose variance explained is all 

roughly equal (Holland, 2008). A fourth condition is to use a scree plot, which is a line plot 

of the eigenvalues of factors or PCs in an analysis (Figure 5). Following the criteria set out 

by Cattell and Jaspers (1967), which suggests using all the PCs up to and including the first 

one before the break, whereby three PCs were retained to which eigenvalues greater than 

unity were attained. 
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Figure 5. Example of PCA 

3. Disease Detection and Classification 

The reviewed articles that implemented ML for BSR disease detection have been 

classified into five approaches; namely electric nose, electrical properties and remote sensing 

that encompasses multispectral, hyperspectral, radio detecting and ranging (RADAR) as well 

as light detection and ranging (LiDAR). Details of the approaches are discussed in the 

following section.  

3.1 Electronic Nose (e-nose) System 

In the e-nose system, the odour parameter was used to differentiate between healthy 

and unhealthy trees. A commercial e-nose sensor, Cyranode 320 (C-320 by Cyrano Sciences 

Inc. (USA)) used by Markom et al. (2009) is a handheld e-nose instrument that has 32 sensing 

elements including components for sampling, sensory and signal processing (Boilot et al., 

2002). The collected data sets were normalised and separated into training and testing. ML 

methods that were used are PCA and ANN. PCA was used to reduce the dimensionality of 

the data and used as input for the pattern recognition tool, ANN. Three parts from each of the 

oil palm trees in every category were used for laboratory analysis i.e., bored trunk, 

surrounding trunk and soil point. There were differences in the laboratory results with the 

on-site because of physiological changes in the test samples during transit. Thus, only on-site 

data were utilised. The odour profiles recorded were able to give specific odour fingerprints 
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of healthy and unhealthy trees and are consistent for each tree. Meanwhile, Abdullah et al. 

(2012) invented a handheld e-nose sensor and the basidiocarp samples were taken to the lab 

for testing without field tests. Similar ML method, PCA was used to reduce the 

dimensionality of the data. Ten input sensors were chosen, which have high values of 

principal loading and total variance higher than 90%. ML methods comprised of HCA and 

LDA were utilised to find the separation between the samples. The results from ML methods 

used such as LDA and HCA were able to separate the odours of the basidiocarp samples and 

the ambient air as the reference. The challenges are the detection has to be done with the 

existence of GB basidiocarp, where some of the infected oil palm trees did not exhibit the 

basidiocarp. The invented handheld e-nose may give different results when tested on a 

plantation due to different environments compared to the laboratory. The study can be 

improved by developing biosensors using chemical components based on conducting 

polymers. Both outcomes from the odour input showed that the e-nose device was possible 

to segregate infected and healthy trees but regarding different levels of infection, further 

research is needed. 

3.2 Electrical Properties 

Khaled et al. (2018) used electrical properties such as impedance, capacitance, dielectric 

constant and dissipation factor to detect BSR disease in oil palm trees at an early stage. ML 

methods used to choose the most significant frequencies input were SVM-FS, RF and GA, while 

the BSR severity was classified using SVM and ANN methods. The results showed that SVM-

FS was the best model with the highest accuracies compared with RF and GA models. SVM-FS 

is the tool in combination with the ranks search method, which represents the results in feature 

ranking format in line with the predictive model score. The score is based on SVM recursive 

feature elimination (SVMRFE) to sort represented by the weight vector (Guyon et al., 2002). In 

addition, RF is a decision tree bagging method that is effective when considering high 

dimensional data due to its ability to prevent missing and unbalanced data and reduce noise 

(Samsudin et al., 2015). Meanwhile, GA is a search algorithm to reduce the computational issues 

associated with a large number of features. Only 56 samples from mature oil palm trees were 

selected with 14 oil palm trees for every four levels of infections. Leaflet from frond number 17 

was randomly collected, which gathered 224 samples in total. Spectral data of foliar samples 

were scanned using a portable spectroradiometer at a 1.45 nm interval and range of 273 to 1,100 

nm with a resolution of 5 nm. Data were separated between training and testing with a ratio of 

70:30. The results show that SVM performed slightly better than ANN but no significant 

difference was found using analysis of variance (ANOVA) at a 5% significant level. 
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Additionally, Duncan test found a significant difference between the healthy and mild infection 

levels but no significant difference was found between moderate and severe infection levels. 

Impedance values produced the highest accuracies, while dissipation values produced the lowest 

accuracies. It was because of the electrical properties of leaf changes as a result of stress on plant 

water content and structure in infection level. The challenges are to differentiate the moderate 

and severe classes of infection and to make the approach practical and operational in the oil palm 

plantation because the experiments were conducted in the laboratory.  

3.3 Remote Sensing 

Remote sensing data integrated with ML methods were used by several researchers to 

detect and classify BSR disease in oil palm plantations. A remote sensing system is defined as a 

method for the acquisition of information on their properties through analysis of the data on the 

objects by sensors without physical contact with the objects (Okamoto, 2001). The approaches 

comprise multispectral, hyperspectral, RADAR and LiDAR imaging systems using airborne, 

ground and handheld platforms at leaf and canopy scales. 

3.3.1 Multispectral image 

Thermal imaging technique was used to detect BSR disease in 53 healthy and 53 

infected palms (Bejo et al., 2018). ML method used for this study was PCA which showed 

two distinguishable trend lines for healthy and BSR-infected trees in score plots PC1 and 

PC3. Then, two ML methods - SVM and kNN were used, where SVM results gave a higher 

accuracy compared to kNN with 89.2% accuracy during training and 84.4% during testing. 

Three thermal images were captured randomly for each tree, in three different angles focused 

on the canopy section using a handheld thermal camera. Four values were extracted from the 

images, i.e., the maximum, minimum, mean and standard deviation of pixel intensity.  For 

each sample of the tree, the data were averaged into a single value. Then, statistical analysis 

was used to determine significant information for the classification of healthy and unhealthy 

trees. To improve the classification, three different indices values were formed - the average 

value of the mean intensity of healthy trees, the average value of mean intensity value of 

unhealthy trees and the average value of the mean intensity of all trees. Data were separated 

between training and testing with a ratio of 70:30. It was proposed that another type of image 

such as visible (VIS) image can be integrated for better classification and development of 

new vegetative index. Meanwhile, Santoso et al. (2017) employed Quickbird satellite images 

with five available bands visible red, green, blue, near-infrared and panchromatic for BSR 

disease classification in Sumatera, Indonesia. A similar ML approach was used, PCA for pre-
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processing data and then other ML methods were used, RF, SVM and CART to process the 

data. The results showed that the RF classifier was the best classifier compared to SVM and 

CART models with the highest producer accuracy of 91%, user accuracy of 83% and overall 

accuracy of 91%. The sites consisted of 144 oil palm trees of different ages ranging from 10 

to 21 years old and were divided into only two classes - 99 healthy trees (99) and unhealthy 

trees (45). Segmentation of the image was processed in ENVI and ArcGIS (ESRI) to identify 

the spatial pattern of BSR disease and pixel extraction was performed in Rstudio (RStudio 

2015) software. Data were separated in the ratio of 75% for training (109 trees) and 25% for 

testing (35 trees). The training models used 10 repeated cross-validations (10 folds). 

Subsequently, images from the WorldView-3 satellite that has a panchromatic resolution of 

1.31 m, 8 bands with 1.24 m resolution and a revisit interval of less than 1 day were used for 

BSR severity classification (Santoso et al., 2019). Similar ML algorithms were applied as 

Santoso et al. (2017), using RF and SVM, only the CART method was replaced by DT. As a 

result, the SVM approach was the best classifier to differentiate all four classes with a 

moderate overall accuracy of 54%. Tuning parameters were used with the training data to 

process the prediction models and to classify the severity classes in the testing data set. 

Jeffries-Matusita (JM) distance was used to calculate the classes’ separability and stepwise 

variable selection was used to obtain significant variables to separate the classes. The 

reflectance values of each satellite band showed significant differences among the four 

classes of BSR infection, but the JM distance showed low values, which indicated low 

separability among all class pairs. Image pixels were converted from digital numbers to top-

of-atmosphere spectral radiance at a minimum. 1923 oil palm trees were selected based on 

four severity labels as healthy (H), initial unhealthy (UH1), moderate unhealthy (UH2) and 

severely unhealthy (UH3), comprising 36% H (695), 23% UH1 (432), 18% UH2 (348), and 

23% UH3 trees (448). The mean of the nine-pixel values was extracted from the adjustable 

square polygon used to cover different oil palm crown sizes. Data were separated between 

training and testing with a ratio of 75:25 and normalisation, resampling and training and 

prediction were performed using R software. The images were pre-processed for radiometric 

correction and geometric correction using the rational polynomial coefficient (RPC) 

technique. In the future, instead of using satellite data, the method could be tested using 

unmanned aerial vehicles (UAVs) attached with multispectral cameras. 

3.3.2 Hyperspectral image 

NN analysis method was applied by Ahmadi et al. (2017) for separating and 

classifying spectral data of healthy and infected oil palm trees. The NN method used in this 
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study was BP and multilayer owed to the ability to determine nonlinear combinations of raw, 

first, and second derivative spectral datasets. A total of 1016 foliar samples, which is 416 

from the first trial and 600 from the second trial were obtained from frond numbers 9 and 17. 

Spectral data of foliar samples were scanned using a portable spectroradiometer at a 1.45 nm 

interval and range of 273 to 1,100 nm with a resolution of 5 nm. Data were separated between 

training and testing with a ratio of 70:30. Derivative data were calculated by division of the 

differences between spectral reflectance. Best results for differentiating T1 and T2 occurred 

in the visible range of green wavelength with an accuracy of 83.3%, and 100.0% for 540 nm 

to 550 nm, respectively. Other stresses i.e., lack of nutrition and weather could cause 

chlorophyll deficiency, which may affect the spectroscopy reflectance. Detection of BSR in 

oil palm had also been explored in North Sumatra, Indonesia using PP-SYSTEMS in the 

range of 310 to 1130 nm, with 256 bands and 10 nm resolutions (Lelong et al., 2010). ML 

classification method using PLS-DA was applied and the results have shown that the 

proposed method could discriminate the healthy and infected trees with 98% accuracy and 

for four levels of classification with 94% accuracy. The systems were mounted on a 2 m shaft 

on top of a scaffold to measure the canopy of 95 oil palm trees consisting of 36 healthy trees, 

18 trees of level 1, 38 trees of level 2 and 3 trees of level 3. The reflectance values were 

averaged from six to ten repetitions resulting in 202 spectral bands in the range of 450 to 

1100 nm. Spectra pre-processing is essential to reduce the noise due to the difference in 

background reflectance and illuminations. In this research, Savitzky- Golay (SG) filtering was 

used as an unweighted linear least square fit method for data smoothing. Then, a large set of 

combinations were tested consisting of nine different window sizes, derivatives and polynomial 

fits, where the best result was a smoothing window of 26 nm with the second-order derivative of 

a third-degree polynomial. The challenge is to differentiate between levels 1 (mild) and level 2 

(moderate), where the boundaries for these two levels are difficult to determine and only depend 

on field observation. The method could be advanced through satellite image application, while a 

larger sample size with an on-site tissue culture technique could be used to validate the findings 

for field application. In addition, a handheld portable hyperspectral spectroradiometer was used 

to collect leaf reflectance data of frond no. 17 from 47 healthy, 55 slightly damaged trees, 48 

moderately damaged, and 40 heavily damaged oil palm trees (Liaghat et al., 2014). Among the 

ML models used i.e., LDA and QDA, kNN and NB, PCA and kNN classification models resulted 

in 97% average overall accuracy with the second derivative dataset. Field data collection was 

performed during optimum illumination between 11:00 a.m. and 3:00 p.m. Three parts of a frond 

with 10 replications for each part were averaged. Meanwhile, the spectral range was 325 nm to 

1040 nm resulting in 716 field reflectance values. The absorbance spectra also were normalised 
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and baseline before running the SG filter for smoothing the data (Liaghat et al., 2011). The filter 

window size was set to seven and the spectra were derived using second order to generate the 

first and second derivation datasets. Data were separated between training and testing with a ratio 

of 75:25. The results of the study showed that vigour discrimination techniques along with the 

ML approach are needed to support a consistent classification of the disease. Future work will 

involve a wider variation of oil palm trees in terms of ages of trees, soil types and varieties. 

Furthermore, a hyperspectral camera was attached to an aerial vehicle to scan 130 hectares of oil 

palm plantations in Colombia (Pinto et al., 2019). The ML methods employed in this study are 

SU and CNN based on the spectral and spatial properties of the hyperspectral images of the oil 

palms. SU is the process of decomposing the spectral signature of a mixed pixel into a collection 

of endmembers and their corresponding fractions, or abundances. Simulation results showed that 

the best overall accuracy was up to 89% using only 20% of the training samples. The main 

characteristic of a CNN is the weight-sharing mechanism that can drastically decrease the number 

of parameters, and thus prevent the emergence of overfitting while reducing the complexity of 

the NN model (Gu et al., 2018). The results are images with 299 x 294 pixels spatial resolutions, 

160 hyperspectral bands and a range spectral of 400 nanometres to 1000 nanometres. The images 

were acquired through 430 meters of flight altitude and nine flight lines, while the ground truth 

was manually created with 3 colours i.e., healthy palms in green, diseased palms in red, and 

background in blue. Three ratios of data separation were used for training and validation – 10:90, 

15:85 and 20:80. 

3.3.3 RADAR 

ALOS PALSAR 2 is a Synthetic Aperture Radar (SAR) sensor, which emits L-band 

microwave radio waves and was employed by Hashim et al. (2018a). Two polarisations from 

the satellite images, HH (horizontal-horizontal) and HV (horizontal-vertical) for reception 

and emission of radar acquisition were used. ML classification using DT classifier showed 

that the overall accuracies for HV and HH backscatter classification were 56.52% and 

45.65%, respectively. The SAR data acquisition is independent of solar illumination is 

unaffected by the presence of cloud cover. Data from 55 healthy and 37 unhealthy oil palm 

trees were pre-processed to filter out the noise using the Sentinel Application Platform 

(SNAP). SNAP is open-source software for processing SAR data, including from ALOS 

PALSAR 2. The images were imposed radiometric calibration to remove the noise and 

patches. Then, the backscatter coefficients were converted from linear to dB and lastly were 

filtered using Enhanced Lee filter with 3x3 windows to remove the high-frequency 

components. Further analysis was conducted by Hashim et al. (2018b) to classify the oil palm 
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trees into four different classes consisting of 55 healthy (T0), 11 mild infected (T1), 15 

moderate infected (T2) and 11 severe infected (T3). Similar ML techniques were used by 

Hashim et al. (2018a), and only different classifier models were used – MLP and K-star. 

MLP is a class of NNs comprised of one or more layers of neurons. Meanwhile, K-star or K* 

is an instance-based classifier, where the classification is done by comparing it to a database 

of pre-classified examples with similar instances will have similar classifications. 

(Mahmood, 2013). The results revealed that the MLP classifier for HV polarisation 

accomplished better results than the Kstar classifier with 77% accuracy. In future studies, full 

polarisation, as well as multi-temporal data, can be investigated to develop an early detection 

technique of 419 G. boninense disease. 

3.3.4 LiDAR 

Terrestrial LiDAR was used to scan 40 oil palm trees in four levels of severity (Husin 

et al., 2020). PCA was used to reduce the dimensionality of the original data and cross-

validation was used to validate the dataset. The results showed that the classification learners 

of kNB using the first and second PCs (PC1 and PC2) attained the best results, where 

classification of healthy (T0) and mild infected trees (T1) was done with 100% accuracy, 

which is good for early detection of the disease. Five parameters were extracted from the 

scans: C200 (canopy stratum 200 cm from the top); C850 (canopy stratum 850 cm from the 

top); crown area (number of pixels inside the crown); frond angle and frond number. The 

registration process was done to merge and synch laser hits resulting from the four scan 

positions for each tree. C200 and C850 were generated from the stratification method of the 

3D point cloud, while crown area, frond angle and frond number were generated from the 

top view image. The data were divided into a ratio of 80:20 for testing and training. The 

classification models with accuracy levels higher than 70% were considered for evaluation 

using another 40-prediction data. Furthermore, the classification model achieved an average 

model accuracy of 74.5% during training, an average accuracy of 85% when classifying four 

levels of infections and an average accuracy of 90% when classifying two levels of infections, 

healthy–unhealthy trees. In future research, the database will be broadened to improve 

classification accuracy. All the reviewed ML approaches used for BSR detection have been 

summarised in Table 3. 
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Table 3. Summary of ML approaches used for BSR detection 

Oil palm 

part 

Platform Input data ML 

techniques 

Levels Sampling details Highest 

accuracy 

References 

 Satellite Spectral RF 2 144 palms - 99 

healthy trees 

91% (Santoso et 

al., 2017) 

  (multispectral)   and 45 unhealthy.   

Canopy     Ages from 10 to 

21 years old 

  

 Satellite Spectral SVM 4 1923 palms - 695 

healthy, 432 

54% (Santoso et 

al., 2019) 

  (multispectral)   level 1, 348 level 

2, and 448 

  

     level 3   

     Ages from 2 to 

14 years old 

  

 Satellite Spectral MLP 4 92 palms - 55 

healthy, 11 level 

77.17% (Hashim et 

al., 2018b) 

  (RADAR)   1, 15 level 2 and 

11 level 3. 

  

     Age 9 years old.   

 Ground Spectral SVM 2 106 palms - 53 

healthy trees 

89.2% (Bejo et al., 

2018) 

  (thermal)   and 53 unhealthy.   

 Ground Spectral PLS-DA 4 95 oil palm trees – 

36 healthy, 

94% (Lelong et 

al., 2010) 

  (hyperspectral)   18 level 1, 38 

level 2 and 3 

  

     level 3   

 Ground Spectral kNN 4 190 palms - 47 

healthy, 55 

97% (Liaghat et 

al., 2014) 

  (hyperspectral)   level 1, 48 level 2, 

and 40 

  

     level 2 from frond 

no. 17 

  

 Ground Spectral KNB 4 40 palms - 10 

trees in each 

74.5% (Husin et 

al., 2020) 

  (LiDAR)   level   

     Age 9 years old   



AAFRJ 2023, 4, 2; a0000365; https://doi.org/10.36877/aafrj.a0000365 17 of 21 

 

Oil palm 

part 

Platform Input data ML 

techniques 

Levels Sampling details Highest 

accuracy 

References 

 Aerial Spectral CNN 2 Spatial 

dimensions of 299 

x 

88.79% (Pinto et 

al., 2019) 

  (hyperspectral)   294 pixels   

     and 160 

hyperspectral 

bands 

  

 Ground Electrical SVM, RF, 

GA, 

4 32 palms - 8 trees 

in each 

80.79% (Khaled et 

al., 2018) 

Leaf  impedance ANN  level   

     180 samples from 

frond no. 17 

  

 Ground Spectral ANN 4 374 palms 100% (Ahmadi et 

al., 2017) 

  (hyperspectral)   1,016 samples 

from frond 

  

     numbers 9 and 17.   

     Age 12 years old   

Trunk Ground Odour LDA 2 n/a 100% (Abdullah 

et al., 2012) 

4. Conclusions 

In this paper, a summary of the selected useful and effective ML applications in the 

detection and classification of BSR disease in oil palm fields was presented. Throughout the 

survey, it was concluded that pre-processing techniques i.e., PCA is a common method used 

to reduce the dimensionality of data. SVM is perhaps a more popular method in ML because 

of its kernel ability in non-linear separation problems and its effectiveness in high 

dimensional spaces. Future predictions for ML applications are significantly greater adoption 

of ML models, opening the door to integrated and useful tools. The fusion of automated data 

collection, data analysis, ML deployment, and decision-making or assistance will offer useful 

benefits consistent with so-called knowledge-based agriculture for the solutions of oil palm 

disease problems. In addition, all the developed models were reasonably accurate in 

classification using both training and testing datasets. Different features were utilised by 

various ML algorithms for BSR disease detection; however, no model generally outperforms 

the others because the choice of approach will depend on constraints i.e., size of data and 

nature of the classification problems. BSR remains a serious problem in oil palm fields, thus, 
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there are need to implement an effective, fast, accurate and automatic system, which can be 

fully utilised for disease detection in oil palm fields. The integration of the ML approach in 

the techniques will continue to grow and the application of such techniques to solve problems 

will be on the rise. 
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